Abstract

Room-temperature electroluminescence (EL) has been realized from Sn-doped In2O3 (In2O3:Sn) nanorods. Heterojunction light-emitting diode (LED) was formed by depositing a layer of randomly packed n-In2O3:Sn nanorods onto a p-type 4H-SiC substrate. It is found that the emission intensity of the heterojunction LED under forward bias can be maximized by doping the In2O3 nanorods with 3 mol. % of Sn. Furthermore, two emission peaks of the EL spectra are observed at ~395 and ~440 nm. These ultraviolet and visible peaks are attributed to the radiative recombination at Sn induced and intrinsic defect states of the In2O3:Sn nanorods.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hara et al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000).
    [CrossRef]
  2. C. W. Dhananjay and C.-W. Chu, “Chu, “Realization of In2O3 thin film transistors through reactive evaporation process,” Appl. Phys. Lett. 91(13), 132111 (2007).
    [CrossRef]
  3. J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
    [CrossRef] [PubMed]
  4. S. Kundu and P. K. Biswas, “Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide film on glass,” Chem. Phys. Lett. 414(1-3), 107–110 (2005).
    [CrossRef]
  5. D. J. Seo and S. H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis,” Physica B 357, 420–427 (2005).
  6. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  7. J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).
  8. H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999).
    [CrossRef]
  9. M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
    [CrossRef]
  10. S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
    [CrossRef]
  11. C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
    [CrossRef]
  12. H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
    [CrossRef]
  13. H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
    [CrossRef]
  14. C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
    [CrossRef]
  15. C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
    [CrossRef]

2007 (2)

C. W. Dhananjay and C.-W. Chu, “Chu, “Realization of In2O3 thin film transistors through reactive evaporation process,” Appl. Phys. Lett. 91(13), 132111 (2007).
[CrossRef]

C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
[CrossRef]

2006 (1)

J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).

2005 (6)

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

S. Kundu and P. K. Biswas, “Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide film on glass,” Chem. Phys. Lett. 414(1-3), 107–110 (2005).
[CrossRef]

D. J. Seo and S. H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis,” Physica B 357, 420–427 (2005).

H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
[CrossRef]

S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
[CrossRef]

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

2003 (1)

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

2001 (2)

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

2000 (1)

K. Hara et al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000).
[CrossRef]

1999 (1)

H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999).
[CrossRef]

Bae, S. Y.

H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
[CrossRef]

Biswas, P. K.

S. Kundu and P. K. Biswas, “Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide film on glass,” Chem. Phys. Lett. 414(1-3), 107–110 (2005).
[CrossRef]

Cai, W. P.

H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999).
[CrossRef]

Cao, H. Q.

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

Chang, P. C.

J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).

Chen, C. L.

C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
[CrossRef]

Chen, D. R.

C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
[CrossRef]

Chen, T. P

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

Chen, T. P.

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

Choi, Y. S.

H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
[CrossRef]

Chu, C.-W.

C. W. Dhananjay and C.-W. Chu, “Chu, “Realization of In2O3 thin film transistors through reactive evaporation process,” Appl. Phys. Lett. 91(13), 132111 (2007).
[CrossRef]

Chun, H. J.

H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
[CrossRef]

Dhananjay, C. W.

C. W. Dhananjay and C.-W. Chu, “Chu, “Realization of In2O3 thin film transistors through reactive evaporation process,” Appl. Phys. Lett. 91(13), 132111 (2007).
[CrossRef]

Fan, Z. Y.

J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Hara, K.

K. Hara et al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000).
[CrossRef]

Ireland, J. R.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Jiao, X. L.

C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
[CrossRef]

Jin, S.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Kannewurf, C. R.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Kundu, S.

S. Kundu and P. K. Biswas, “Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide film on glass,” Chem. Phys. Lett. 414(1-3), 107–110 (2005).
[CrossRef]

Lau, S. P.

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lee, C. Y.

S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
[CrossRef]

Lei, Y.

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

Li, G. H.

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

Li, S. Y.

S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
[CrossRef]

Liang, C. H.

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

Liang, Y.

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lin, P.

S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
[CrossRef]

Lu, J. G.

J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).

Marks, T. J.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Meng, G. W.

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

Metz, A. W.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Ni, J.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Park, J.

H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
[CrossRef]

Park, S. H.

D. J. Seo and S. H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis,” Physica B 357, 420–427 (2005).

Philipp, F.

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

Qiu, X. Q.

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

Rusli,

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

Seo, D. J.

D. J. Seo and S. H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis,” Physica B 357, 420–427 (2005).

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Stern, C. L.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Tseng, T. Y.

S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
[CrossRef]

Wang, A.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Wang, C. Q.

C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wang, L.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Wang, X. F.

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

Yan, H.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Yang, Y.

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

Yu, S. F.

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

Yuen, C.

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

Zhang, L. D.

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999).
[CrossRef]

Zhang, X. Y.

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

Zhao, M.

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

Zheng, M. J.

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

Zhou, H. J.

H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999).
[CrossRef]

Zhu, Q. M.

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

Adv. Mater. (1)

C. H. Liang, G. W. Meng, Y. Lei, F. Philipp, and L. D. Zhang, “Catalytic growth of semiconducting In2O3 nanofibers,” Adv. Mater. 13(17), 1330–1333 (2001).
[CrossRef]

Appl. Phys. Lett. (5)

C. Yuen, S. F. Yu, S. P. Lau, Rusli, T. P. Chen, Rusli, and T. P Chen, “Fabrication of n-ZnO: Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique,” Appl. Phys. Lett. 86(24), 241111 (2005).
[CrossRef]

H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu, and M. Zhao, “Room-temperature ultraviolet-emitting In2O3 nanowires,” Appl. Phys. Lett. 83(4), 761–763 (2003).
[CrossRef]

C. W. Dhananjay and C.-W. Chu, “Chu, “Realization of In2O3 thin film transistors through reactive evaporation process,” Appl. Phys. Lett. 91(13), 132111 (2007).
[CrossRef]

H. J. Zhou, W. P. Cai, and L. D. Zhang, “Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica,” Appl. Phys. Lett. 75(4), 495–497 (1999).
[CrossRef]

M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, “Ordered indium-oxide nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett. 79(6), 839–841 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

H. J. Chun, Y. S. Choi, S. Y. Bae, and J. Park, “Bicrystalline indium oxide nanobelts,” Appl. Phys., A Mater. Sci. Process. 81(3), 539–542 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

S. Kundu and P. K. Biswas, “Synthesis and photoluminescence property of nanostructured sol-gel indium tin oxide film on glass,” Chem. Phys. Lett. 414(1-3), 107–110 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Ni, H. Yan, A. Wang, Y. Yang, C. L. Stern, A. W. Metz, S. Jin, L. Wang, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, “MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes,” J. Am. Chem. Soc. 127(15), 5613–5624 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

C. Q. Wang, D. R. Chen, X. L. Jiao, and C. L. Chen, “Lotus-root-like In2O3 nanostructures: Fabrication, characterization, and photoluminescence properties,” J. Phys. Chem. C 111(36), 13398–13403 (2007).
[CrossRef]

Mater. Sci. Eng. (1)

J. G. Lu, P. C. Chang, and Z. Y. Fan, “Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications,” Mater. Sci. Eng. R52, 49–91 (2006).

Nanotechnology (1)

S. Y. Li, C. Y. Lee, P. Lin, and T. Y. Tseng, “Low temperature synthesized Sn doped indium oxide nanowires,” Nanotechnology 16(4), 451–457 (2005).
[CrossRef]

Nature (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Physica B (1)

D. J. Seo and S. H. Park, “Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis,” Physica B 357, 420–427 (2005).

Sol. Energy Mater. Sol. Cells (1)

K. Hara et al., “Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells,” Sol. Energy Mater. Sol. Cells 64(2), 115–134 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the proposed n-In2O3:Sn nanorods/p-SiC(4H) substrate heterojunction LED.

Fig. 2
Fig. 2

(a) A typical SEM image showing the general morphology of In2O3:Sn (3 mol. %) nanorods. (b) XRD pattern of the cubic In2O3:Sn (3 mol. %) nanorods. (c) Composition distribution of In, Sn, and Au. (d) An SEM image of the In2O3:Sn (3 mol. %) nanorod given in Fig. 2(c). (e) EDS spectrum of the In2O3:Sn (3 mol. %) nanorod. (f) A HRTEM image of the In2O3:Sn (3 mol. %) nanorod and (g) the corresponding SAED pattern.

Fig. 3
Fig. 3

Room temperature EL spectra of the (a) n-In2O3:Sn (3 mol. %) nanorods/p-SiC substrate and (b) n-In2O3 nanorods/p-SiC substrate heterojunction LEDs. The insets show the color photos taken from the LEDs under a forward bias voltage of 10 V and SEM image of In2O3 nanorods.

Fig. 4
Fig. 4

Room temperature current-voltage characteristics of n-In2O 3 :Sn (3 mol. %) nanorods/p-SiC substrate and n-In2O3 nanorods/p-SiC substrate heterojunction LEDs. The inset shows the light-current characteristics of the heterojunction LEDs.

Fig. 5
Fig. 5

Fitting results of (a) normalized EL spectrum obtained from the In2O3:Sn (3 mol. %) nanorods heterojunction LED at forward biased voltage of 12 V and (b) normalized PL spectrum of the In2O3:Sn (3 mol. %) nanorods deposited on p-SiC under 355 nm Nd:YAG laser with excitation power of ~1 MW/cm2. The insets show the energy band alignment of the p-SiC/n-In2O3:Sn under forward bias and equilibrium. It is noted that the electron affinity and bandgap energy, E g of SiC (In2O3) are 4.05 (3.7) and 3.6 (3.6) eV respectively. In the energy band diagram E C (E V) represents conduction (valence) band. The discontinuity of conduction (valence) band is found to be 0.35(0.35) eV.

Metrics