Abstract

We discuss the coupling between optically excited semiconductor nanocrystals (NC) and thin metal films in both the single and multi-exciton regime. Using time-resolved photoluminescence spectroscopy, we determine the decay dynamics of free space and surface plasmon polariton (SPP) coupled emission. The two dynamics are found to be distinctly different at very small NC-metal separations and at photon energies close to the SPP resonance frequency. A comparison with numerical calculations allow us to conclude that the difference in emission dynamics is associated with the different interactions of parallel and perpendicular dipole emitters with lossy surface waves. Experiments at high excitation densities reveal that the coupling to SPPs and lossy surface waves is identical for excitons and biexcitons.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
    [CrossRef] [PubMed]
  2. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  3. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  4. Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
    [CrossRef] [PubMed]
  5. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  7. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
    [CrossRef]
  8. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [CrossRef] [PubMed]
  9. Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
    [CrossRef] [PubMed]
  10. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [CrossRef] [PubMed]
  11. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
    [CrossRef] [PubMed]
  12. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  13. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974).
  14. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [CrossRef] [PubMed]
  15. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
    [CrossRef]
  16. A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
    [CrossRef]
  17. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin; New York, 1987).
  18. M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
    [CrossRef]
  19. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  20. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
    [CrossRef]
  21. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
    [CrossRef]
  22. M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
    [CrossRef]
  23. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
    [CrossRef]
  24. S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008).
    [CrossRef]
  25. V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
    [CrossRef]
  26. M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003).
    [CrossRef]
  27. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
    [CrossRef] [PubMed]
  28. B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
    [CrossRef]

2010 (2)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

2009 (4)

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

2008 (2)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008).
[CrossRef]

2007 (2)

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

2006 (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

2005 (3)

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

2004 (3)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
[CrossRef]

2003 (2)

M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003).
[CrossRef]

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
[CrossRef]

2002 (1)

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

2000 (2)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[CrossRef]

1999 (2)

M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

1974 (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Achermann, M.

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[CrossRef] [PubMed]

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008).
[CrossRef]

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
[CrossRef]

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
[CrossRef]

M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003).
[CrossRef]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Artemyev, M. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Bawendi, M. G.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Catchpole, K. R.

Chan, W. C. W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Crooker, S. A.

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dereux, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Eisler, H. J.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Empedocles, S. A.

M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[CrossRef]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Fedutik, Y.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Fischer, H.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Furis, M.

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Grudzinski, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

Gryczynski, I.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hollingsworth, J. A.

M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003).
[CrossRef]

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Htoon, H.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

Jiang, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

Klimov, V. I.

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
[CrossRef]

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
[CrossRef]

M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003).
[CrossRef]

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[CrossRef]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Larkin, I. A.

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Malicka, J.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

Malko, A. V.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

Markey, L.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

McBranch, D. W.

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Neuhauser, R.

M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Pan, Z.

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Petruska, M. A.

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
[CrossRef]

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Schneeloch, J. E.

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

Schöps, O.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Temnov, V. V.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Tuominen, M. T.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[CrossRef] [PubMed]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Wang, Y.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[CrossRef] [PubMed]

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Weeber, J. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Woggon, U.

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Yalcin, S. E.

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008).
[CrossRef]

Yang, B.

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

Yang, T.

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81(7), 1303–1305 (2002).
[CrossRef]

S. E. Yalcin, Y. Wang, and M. Achermann, “Spectral bandwidth and phase effects of resonantly excited ultrafast surface plasmon pulses,” Appl. Phys. Lett. 93(10), 101103 (2008).
[CrossRef]

J. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an Emitting Molecule near a Partially Reflecting Surface,” J. Chem. Phys. 60(7), 2744–2748 (1974).
[CrossRef]

J. Phys. Chem. B (4)

V. I. Klimov, “Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals,” J. Phys. Chem. B 104(26), 6112–6123 (2000).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface Plasmon-Coupled Emission with Gold Films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
[CrossRef]

M. Achermann, M. A. Petruska, S. A. Crooker, and V. I. Klimov, “Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies,” J. Phys. Chem. B 107(50), 13782–13787 (2003).
[CrossRef]

Nano Lett. (1)

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9(8), 2935–2939 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010).
[CrossRef]

Nature (4)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

M. G. Bawendi, S. A. Empedocles, and R. Neuhauser, “Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy,” Nature 399(6732), 126–130 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Phys. Rev. B (4)

A. Bouhelier and G. P. Wiederrecht, “Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy,” Phys. Rev. B 71(19), 195406 (2005).
[CrossRef]

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69(12), 121403 (2004).
[CrossRef]

M. Achermann, J. A. Hollingsworth, and V. I. Klimov, “Multiexcitons confined within a subexcitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals,” Phys. Rev. B 68(24), 245302 (2003).
[CrossRef]

B. Yang, J. E. Schneeloch, Z. Pan, M. Furis, and M. Achermann, “Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence,” Phys. Rev. B 81(7), 073401 (2010).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Wang, T. Yang, M. T. Tuominen, and M. Achermann, “Radiative rate enhancements in ensembles of hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 102(16), 163001 (2009).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[CrossRef] [PubMed]

Y. Fedutik, V. V. Temnov, O. Schöps, U. Woggon, and M. V. Artemyev, “Exciton-plasmon-photon conversion in plasmonic nanostructures,” Phys. Rev. Lett. 99(13), 136802 (2007).
[CrossRef] [PubMed]

Science (1)

V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287(5455), 1011–1013 (2000).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other (2)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1974).

H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin; New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photoluminescence (PL) spectra of two NC samples with center wavelengths of 560 and 630 nm. (b) Schematic of the setup, showing the two detector positions to measure SPPE and FSE dynamics.

Fig. 2
Fig. 2

Decay rates of parallel (black) and perpendicular (red) dipoles and the decomposition of the total rate (markers) into contributions from radiative decay (dash-dotted line), ET to SPPS (dashed line), and ET to lossy waves (solid line). The dipoles are located 10 nm from the gold surface and are either (a) in air, (b) at a dielectric/air interface, or (c) embedded in a thin dielectric layer. For the dielectric layer, we considered a refractive index of 1.46 (silicon oxide).

Fig. 3
Fig. 3

FSE (black) and SPPE (red) decay dynamics recorded at 560 nm with different spacer layers that result in gold-dipole separations of ~10 nm (a) and ~17 nm (b).

Fig. 4
Fig. 4

SPPE/FSE ratio at 560 nm and d ~10 nm (a) and d ~17 nm (b). The yellow line in (a) is the best fit with a single exponential function.

Fig. 5
Fig. 5

(a) Spectrally resolved decay rate differences obtained from FSE and SPPE decay dynamics. The separations between the NC centers and the metal surface were approximately 5 (black circles) and 10 nm (grey squares). (b) Calculated decay rate difference between perpendicular and parallel dipoles for the same metal-dipole separations of 5 (black line) and 10 nm (grey line). The dielectric configuration shown in Fig. 2(c) was used.

Fig. 6
Fig. 6

(a) SPPE dynamics of NCs on a silver film that are excited with varying excitation intensities (emission wavelength is 646 nm). (b) SPPE/FSE ratio at low (grey circles) and high excitation densities (black squares) indicating identical coupling strength of biexcitons and excitons with the silver film.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n g l a s s sin ( θ S P P ) = ε m 1 + ε m .
d N N C d t = g ( t ) ( Γ E T + Γ N C ) N N C ( t ) ,     and     d N S P P d t = Γ E T N N C ( t ) Γ S P P N S P P ( t ) ,
  S P P E ( t ) Γ E T e Γ t + Γ E T || e Γ | | t ,
F S E ( t ) e Γ | | t .
  S P P E ( t ) F S E ( t ) e Δ Γ t + c o n s t a n t ,

Metrics