Abstract

Water concentration and distribution in biotissues are important factors in many applications. THz-wave is a viable tool for water content measurement due to its highly sensitivity to water. In this study, the measuring errors of water concentration using THz-wave induced by transmittance and sample thickness were analyzed theoretically. The chosen basis for sample thickness and measuring THz frequency were presented theoretically. Measurements of the water two-dimensional mapping in different animal tissue samples were demonstrated experimentally, which clearly shows the spatial distribution of the tissues.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350(2), 95–114 (1995).
    [CrossRef]
  2. V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).
  3. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
    [CrossRef] [PubMed]
  4. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33(11), 1258–1260 (2008).
    [CrossRef] [PubMed]
  5. H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
    [CrossRef]
  6. K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
    [CrossRef]
  7. J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a Terahertz quantum cascade laser,” Opt. Express 12(9), 1879–1884 (2004).
    [CrossRef] [PubMed]
  8. T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
    [CrossRef]
  9. A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43(30), 5637–5646 (2004).
    [CrossRef] [PubMed]
  10. E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
    [CrossRef] [PubMed]
  11. E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
    [CrossRef]
  12. H. D. Isengard, “Rapid water determination in foodstuffs,” Trends Food Sci. Technol. 6(5), 155–162 (1995).
    [CrossRef]
  13. K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc. 128(Pt 1), 7–21 (1982).
    [CrossRef] [PubMed]
  14. E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
    [CrossRef] [PubMed]
  15. J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
    [PubMed]
  16. T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).
  17. P. Y. Han, G. C. Cho, and X. C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25(4), 242–244 (2000).
    [CrossRef]
  18. C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
    [CrossRef]
  19. G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
    [CrossRef] [PubMed]
  20. C. F. Zhang and S. M. Durbin, “Hydration-induced far-infrared absorption increase in myoglobin,” J. Phys. Chem. B 110(46), 23607–23613 (2006).
    [CrossRef] [PubMed]
  21. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge: Cambridge University Press, 1999).
  22. H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
    [CrossRef]

2009 (2)

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

2008 (3)

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).

Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33(11), 1258–1260 (2008).
[CrossRef] [PubMed]

2006 (2)

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

C. F. Zhang and S. M. Durbin, “Hydration-induced far-infrared absorption increase in myoglobin,” J. Phys. Chem. B 110(46), 23607–23613 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
[CrossRef]

2004 (6)

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

J. Darmo, V. Tamosiunas, G. Fasching, J. Kröll, K. Unterrainer, M. Beck, M. Giovannini, J. Faist, C. Kremser, and P. Debbage, “Imaging with a Terahertz quantum cascade laser,” Opt. Express 12(9), 1879–1884 (2004).
[CrossRef] [PubMed]

A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43(30), 5637–5646 (2004).
[CrossRef] [PubMed]

2001 (1)

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

2000 (1)

1995 (2)

H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350(2), 95–114 (1995).
[CrossRef]

H. D. Isengard, “Rapid water determination in foodstuffs,” Trends Food Sci. Technol. 6(5), 155–162 (1995).
[CrossRef]

1994 (1)

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

1992 (1)

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

1982 (1)

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc. 128(Pt 1), 7–21 (1982).
[CrossRef] [PubMed]

Abbott, D.

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

Aiba, S.

T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).

Arakawa, M.

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Arnone, D. D.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

Avram, H. E.

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Beck, M.

Bobrow, L.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

Breede, M.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Brito, A. C.

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Brown, E. R.

Chang, Y. B.

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

Chen, J. H.

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Cho, G. C.

Choi, J. W.

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

Cluff, J.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

Cole, B. E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

Crooks, L. E.

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Culjat, M. O.

Darmo, J.

Debbage, P.

Dobroiu, A.

Donhuijsen, K.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Durbin, S. M.

C. F. Zhang and S. M. Durbin, “Hydration-induced far-infrared absorption increase in myoglobin,” J. Phys. Chem. B 110(46), 23607–23613 (2006).
[CrossRef] [PubMed]

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

Faist, J.

Fasching, G.

Fitzgerald, A. J.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

Flanagan, N.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

Giovannini, M.

Gordon, R. E.

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc. 128(Pt 1), 7–21 (1982).
[CrossRef] [PubMed]

Grundfest, W. S.

Han, P. Y.

Hayashi, A.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Hein, G.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Hoffmann, S.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Hofmann, M.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Hoshina, H.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Høvik, B.

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

Ikari, T.

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).

Isengard, H. D.

H. D. Isengard, “Rapid water determination in foodstuffs,” Trends Food Sci. Technol. 6(5), 155–162 (1995).
[CrossRef]

Ito, H.

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
[CrossRef]

Jimenez-Linan, M.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

Kaalhus, O.

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

Kaufman, L.

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Kawase, K.

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
[CrossRef]

A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43(30), 5637–5646 (2004).
[CrossRef] [PubMed]

Knobloch, P.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Koch, M.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Kremser, C.

Kröll, J.

Lee, H.

Lyng, H.

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

Mickan, S. P.

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

Minamide, H.

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
[CrossRef]

Miyamaru, F.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Miyoshi, N.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

Morita, Y.

Ng, B. W.-H.

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

Ogawa, Y.

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
[CrossRef]

Ohshima, Y. N.

Ostmann, T. K.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Otani, C.

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

A. Dobroiu, M. Yamashita, Y. N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward-wave oscillator,” Appl. Opt. 43(30), 5637–5646 (2004).
[CrossRef] [PubMed]

Pepper, M.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

Pickwell, E.

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

Pierz, K.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Png, G. M.

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

Purushotham, A. D.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

Pye, R.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

Pye, R. J.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

Ramdas, A. K.

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

Rofstad, E. K.

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

Ross, K. F.

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc. 128(Pt 1), 7–21 (1982).
[CrossRef] [PubMed]

Shankar, S.

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

Singh, R. S.

Sperling, M.

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Steinsland, E.

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

Suen, J. Y.

Tamosiunas, V.

Tarhan, E.

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

Taylor, Z. D.

Unterrainer, K.

Wallace, V. P.

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

Weiner, A. M.

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

Yamashita, M.

Zelsmann, H. R.

H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350(2), 95–114 (1995).
[CrossRef]

Zhang, C. F.

C. F. Zhang and S. M. Durbin, “Hydration-induced far-infrared absorption increase in myoglobin,” J. Phys. Chem. B 110(46), 23607–23613 (2006).
[CrossRef] [PubMed]

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

Zhang, X. C.

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

P. Y. Han, G. C. Cho, and X. C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25(4), 242–244 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Hoshina, A. Hayashi, N. Miyoshi, F. Miyamaru, and C. Otani, “Terahertz pulsed imaging of frozen biological tissues,” Appl. Phys. Lett. 94(12), 123901 (2009).
[CrossRef]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, “Simulation of terahertz pulse propagation in biological systems,” Appl. Phys. Lett. 84(12), 2190–2192 (2004).
[CrossRef]

Electron. Lett. (1)

T. K. Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging,” Electron. Lett. 37(24), 1461–1463 (2001).
[CrossRef]

Int. J. Radiat. Biol. (1)

E. K. Rofstad, E. Steinsland, O. Kaalhus, Y. B. Chang, B. Høvik, and H. Lyng, “Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue,” Int. J. Radiat. Biol. 65(3), 387–401 (1994).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, “Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo,” J. Invest. Dermatol. 151, 424–432 (2004).

J. Jpn. Soc. Infrared Sci. Technol. (1)

T. Ikari, H. Minamide, H. Ito, and S. Aiba, “Water contents and spatial distribution measurement in thin samples using terahertz wave,” J. Jpn. Soc. Infrared Sci. Technol. 18, 11–17 (2008).

J. Microsc. (1)

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc. 128(Pt 1), 7–21 (1982).
[CrossRef] [PubMed]

J. Mol. Struct. (1)

H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350(2), 95–114 (1995).
[CrossRef]

J. Phys. Chem. B (2)

C. F. Zhang, E. Tarhan, A. K. Ramdas, A. M. Weiner, and S. M. Durbin, “Broadened Far-Infrared Absorption Spectra for Hydrated and Dehydrated Myoglobin,” J. Phys. Chem. B 108(28), 10077–10082 (2004).
[CrossRef]

C. F. Zhang and S. M. Durbin, “Hydration-induced far-infrared absorption increase in myoglobin,” J. Phys. Chem. B 110(46), 23607–23613 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (2)

G. M. Png, J. W. Choi, B. W.-H. Ng, S. P. Mickan, D. Abbott, and X. C. Zhang, “The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements,” Phys. Med. Biol. 53(13), 3501–3517 (2008).
[CrossRef] [PubMed]

E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, “In vivo study of human skin using pulsed terahertz radiation,” Phys. Med. Biol. 49(9), 1595–1607 (2004).
[CrossRef] [PubMed]

Radiology (2)

A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, “Terahertz pulsed imaging of human breast tumors,” Radiology 239(2), 533–540 (2006).
[CrossRef] [PubMed]

J. H. Chen, H. E. Avram, L. E. Crooks, M. Arakawa, L. Kaufman, and A. C. Brito, “In vivo relaxation times and hydrogen density at 0.063-4.85 T in rats with implanted mammary adenocarcinomas,” Radiology 184(2), 427–434 (1992).
[PubMed]

Rev. Sci. Instrum. (1)

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

Semicond. Sci. Technol. (1)

K. Kawase, Y. Ogawa, H. Minamide, and H. Ito, “Terahertz parametric sources and imaging applications,” Semicond. Sci. Technol. 20(7), S258–S265 (2005).
[CrossRef]

Trends Food Sci. Technol. (1)

H. D. Isengard, “Rapid water determination in foodstuffs,” Trends Food Sci. Technol. 6(5), 155–162 (1995).
[CrossRef]

Other (1)

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Cambridge: Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The water concentration error coefficient B as a function of the transmittance

Fig. 2
Fig. 2

The relative error of transmittance induced by sample thickness.

Fig. 3
Fig. 3

The relative error ε for transmittance versus the water volume concentration

Fig. 4
Fig. 4

Schematic diagram of the THz imaging measurement system

Fig. 5
Fig. 5

Measurement of the focal spot size by the knife-edge method.

Fig. 6
Fig. 6

The transmittance of thin sample versus THz frequency. (a) pork, (b) chicken

Fig. 7
Fig. 7

CCD images (a, c) and water content distribution measured with THz wave (b, d) in thin tissue. Sample (a) is pork tissue; sample (c) is chicken tissue.

Fig. 8
Fig. 8

Water volume concentration for different tissues at different THz frequency

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T = I o u t I i n = exp ( α d ) ,
α = α w v w + α n w v n w = α w v w + α n w ( 1 v w ) .
T = exp [ ( α w v w + α n w v n w ) d ] .
v w = ln T α w d .
Δ v w s = 1 α w ( Δ A d ) 2 + ( Δ d d ) 2 · ( α w v w ) 2 ,
Δ v w v w = Δ T T (ln T + α n w d ) = B · Δ T ,
Δ T T = Δ d d · ln T .
ε = | e ( α w ν w + α n w ν n w ) d e α w ν w d e ( α w ν w + α n w ν n w ) d | = | 1 e α n w ν n w d | α n w ν n w d .
Δ v w = ( Δ d d ) v w .

Metrics