Abstract

A self-starting, passively stabilized, monolithic all-polarization-maintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low-nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards mechanical disturbances, and maintains stable modelocking in the temperature range of at least 10 – 40 °C.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kieu, W. Renninger, A. Chong, and F. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34, 593–595 (2009).
    [CrossRef] [PubMed]
  2. D. Turchinovich, X. Liu, and J. Lægsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
    [CrossRef] [PubMed]
  3. J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
    [CrossRef]
  4. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332–3337 (2003).
    [CrossRef] [PubMed]
  5. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [CrossRef] [PubMed]
  6. H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1502 (2002).
    [PubMed]
  7. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 m using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063–6068 (2006).
    [CrossRef] [PubMed]
  8. http://www.batop.de/products/saturable-absorber/saturable-absorber-mirror/data-sheet/saturable-absorbermirror-1040nm/saturable-absorber-mirror-SAM-1040-40-500fs.pdf
  9. http://www.nufern.com/fiber detail.php/84.
  10. J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, “Polarization maintaining hybrid TIR/bandgap all-solid photonic crystal fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThV1.
  11. C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express 16, 13657–13662 (2008).
    [CrossRef] [PubMed]
  12. J. Y. Lee, and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
    [CrossRef] [PubMed]
  13. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
    [CrossRef]
  14. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997).
    [CrossRef]
  15. X. Liu, J. Lægsgaard, and D. Turchinovich, “Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber,” Opt. Lett. 35, 913–915 (2010).
    [CrossRef] [PubMed]
  16. http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf
  17. http://www.crystal-fibre.com/datasheets/HC-1060-02.pdf
  18. J. T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express 16, 9986–9995 (2008).
    [CrossRef] [PubMed]
  19. K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
    [CrossRef]
  20. J. Lægsgaard, and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628–9644 (2008).
    [CrossRef] [PubMed]
  21. P. J. Roberts, private communication.
  22. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
    [CrossRef]
  23. J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
    [CrossRef]
  24. E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
    [CrossRef]
  25. H. Tu, and S. A. Boppart, “Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy,” Proc. SPIE 7569, 75692CD-1–9 (2010).

2010 (1)

2009 (1)

2008 (5)

2007 (1)

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[CrossRef]

2006 (2)

2005 (1)

E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
[CrossRef]

2003 (1)

2002 (2)

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1502 (2002).
[PubMed]

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

1997 (1)

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[CrossRef]

1980 (1)

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Aniel, F.

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

Bjarklev, A.

Boucaud, P.

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

Broeng, J.

Chong, A.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Falk, C. I.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Feve, S.

E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
[CrossRef]

Gavrielides, A.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[CrossRef]

Hall, G. E.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Hansen, K. P.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Haus, H. A.

S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[CrossRef]

Houmann, A.

Ilday, F.

Ippen, E. P.

S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[CrossRef]

Jensen, B. B.

Jespersen, K. G.

Keiding, S. R.

Kenney-Wallace, G. A.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Kieu, K.

Kim, D. Y.

Kristensen, J. T.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Lægsgaard, J.

Le Cren, E.

E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
[CrossRef]

Lee, J. Y.

Lim, H.

Limpert, J.

Liu, X.

Lobo, S.

E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
[CrossRef]

Lourtioz, J.-M.

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

Lyngsø, J. K.

Mangeney, J.

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

Namiki, S.

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[CrossRef]

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[CrossRef]

Nielsen, C. K.

Nolte, S.

Olausson, C. B.

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[CrossRef]

Renninger, W.

Roberts, P. J.

Sala, K. L.

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

Schreiber, T.

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[CrossRef]

Simon, J.-C.

E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
[CrossRef]

Stelmakh, N.

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[CrossRef]

Therkildsen, K. T.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Thomsen, J. W.

Tünnermann, A.

Turchinovich, D.

Wise, F.

Yu, C. X.

Zellmer, H.

Appl. Phys. Lett. (1)

J. Mangeney, N. Stelmakh, F. Aniel, P. Boucaud, and J.-M. Lourtioz, “Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs,” Appl. Phys. Lett. 80, 4711–4713 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[CrossRef]

K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall, “CW autocorrelation measurements of picosecond laser pulses,” IEEE J. Quantum Electron. QE-16, 990–996 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
[CrossRef]

Opt. Commun. (2)

E. Le Cren, S. Lobo, S. Feve, and J.-C. Simon, “Polarization sensitivity characterization under normal incidence of a multiple quantum wells saturable absorber nonlinear mirror as a function of the temperature of the chip,” Opt. Commun. 254, 96–103 (2005).
[CrossRef]

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the optical properties of Yb-doped optical fibers,” Opt. Commun. 273, 256–259 (2007).
[CrossRef]

Opt. Express (8)

H. Lim, F. Ilday, and F. Wise, “Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1502 (2002).
[PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332–3337 (2003).
[CrossRef] [PubMed]

C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 m using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063–6068 (2006).
[CrossRef] [PubMed]

J. Y. Lee, and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14, 11608–11615 (2006).
[CrossRef] [PubMed]

J. Lægsgaard, and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628–9644 (2008).
[CrossRef] [PubMed]

J. T. Kristensen, A. Houmann, X. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express 16, 9986–9995 (2008).
[CrossRef] [PubMed]

C. B. Olausson, C. I. Falk, J. K. Lyngsø, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, “Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre,” Opt. Express 16, 13657–13662 (2008).
[CrossRef] [PubMed]

D. Turchinovich, X. Liu, and J. Lægsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[CrossRef] [PubMed]

Other (7)

H. Tu, and S. A. Boppart, “Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy,” Proc. SPIE 7569, 75692CD-1–9 (2010).

http://www.batop.de/products/saturable-absorber/saturable-absorber-mirror/data-sheet/saturable-absorbermirror-1040nm/saturable-absorber-mirror-SAM-1040-40-500fs.pdf

http://www.nufern.com/fiber detail.php/84.

J. K. Lyngsø, B. J. Mangan, and P. J. Roberts, “Polarization maintaining hybrid TIR/bandgap all-solid photonic crystal fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThV1.

P. J. Roberts, private communication.

http://www.nufern.com/specsheets/pm980130014xx1550hp.pdf

http://www.crystal-fibre.com/datasheets/HC-1060-02.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

General layout of the MOPA. HR - high-reflectivity broadband mirror, SESAM - semiconductor saturable absorber mirror, PM AS-PCF - PM all-solid photonic crystal fiber, WDM- 980/1030 nm wavelength division multiplexer, PFC - 20/80 polarization filter coupler, LD - pump laser diode at 974 nm, PISO - polarization-maintaining isolator, PM SM - polarization-maintaining single-mode fiber. PM HC-PCF - PM hollow-core photonic crystal fiber. Inset: oscilloscope reading of the oscillator pulse train in fundamental single-pulse modelocking regime.

Fig. 2.
Fig. 2.

(a) SEM image of the PM AS-PCF. Courtesy of Crystal Fibre A/S. (b) Transmission and dispersion of PM AS-PCF. Central wavelength of the laser at 1033 nm is indicated by a grey line.

Fig. 3.
Fig. 3.

(a) Autocorrelations of the pulse measured after 1-m long PM SMF pigtail following the output port of the oscillator (45 pJ / 1.35 mW), at the isolated output of the amplifier before compression in HC-PCF (12.2 nJ / 351 mW), and at the output of the MOPA after compression in HC-PCF (7.3 nJ / 210 mW). Corresponding autocorrelation and pulse durations at FWHM are indicated. (b) Corresponding optical spectra. Spectral bandwidth at FWHM is indicated. Dotted line - amplifier spectrum measured before the isolator. Dashed line - output spectrum in the case when no CPA is used, i.e. the oscillator pulses are not stretched before amplification. See text for details.

Fig. 4.
Fig. 4.

(a) Calculated evolution of spectral bandwidth and pulse duration in the oscillator on one roundtrip, and after 1-m long PM SMF pigtail following the outcoupler (point of experimental measurements). (b) Calculated pulse shapes at the outcoupler (dashed line), and at the point of measurements (solid line). (c) Corresponding spectra.

Fig. 5.
Fig. 5.

Output power of the oscillator in stable fundamental modelocking regime as (a) a function of lab time, measured at room temperature; (b) during reversible temperature sweeps in the range 10–40 °C. Here temperature was not changing evenly with time.

Metrics