Abstract

We demonstrate an electrically pumped high contrast grating (HCG) VCSEL operating at 1550 nm incorporating a proton implant-defined aperture. Output powers of >1 mW are obtained at room temperature under continuous wave operation. Devices operate continuous wave at temperatures exceeding 60° C. The novel device design, which is grown in a single epitaxy step, may enable lower cost long wavelength VCSELs.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [CrossRef]
  2. M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, “CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55 µm,” Opt. Lett. 31(21), 3170–3172 (2006).
    [CrossRef] [PubMed]
  3. M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
    [CrossRef]
  4. W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
    [CrossRef]
  5. S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
    [CrossRef]
  6. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
    [CrossRef]
  7. A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
    [CrossRef]
  8. C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
    [CrossRef]
  9. M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [CrossRef]
  10. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
    [CrossRef]
  11. A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
    [CrossRef]
  12. M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
    [CrossRef]
  13. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [CrossRef]
  14. C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
    [CrossRef]
  15. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
    [CrossRef] [PubMed]
  16. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
    [CrossRef]
  17. P. Gilet, N. Olivier, P. Grosse, K. Gilbert, A. Chelnokov, I. Chung, and J. Mørk, “High-index-contrast subwavelength grating VCSEL,” in Vertical-Cavity Surface-Emitting Lasers XIV, J. K. Guenter and K. D. Choquette, eds. (SPIE, 2010), Vol. 7615, p. 76150J.
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]

2010 (3)

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[CrossRef] [PubMed]

2009 (2)

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

2008 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

2007 (1)

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

2006 (2)

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

M. Lackner, M. Schwarzott, F. Winter, B. Kögel, S. Jatta, H. Halbritter, and P. Meissner, “CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at 1.55 µm,” Opt. Lett. 31(21), 3170–3172 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

2004 (2)

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

2001 (1)

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

2000 (3)

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

1981 (1)

Almuneau, G.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Amann, M.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

Amann, M. C.

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

Beaudoin, M.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Bengtsson, J.

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

Berseth, C.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Bhat, R.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Böhm, G.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

Boucart, J.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Buell, D. A.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Caliman, A.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Caneau, C.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Chang-Hasnain, C.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chang-Hasnain, C. J.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[CrossRef] [PubMed]

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Chase, C.

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[CrossRef] [PubMed]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[CrossRef]

Chen, L.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Coldren, L. A.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Deichsel, E.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Gaylord, T. K.

Gorblich, M.

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

Grasse, C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

Guryanov, G.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Gustavsson, J.

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

Haglund, A.

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

Halbritter, H.

Hall, B.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Hall, E.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

He, C.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Hofmann, W.

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[CrossRef] [PubMed]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

Hu, M.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Huang, M.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Huang, M. C.

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Iakovlev, V.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Jansen, M.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Jatta, S.

Jedrasik, P.

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

Kapon, E.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Karagodsky, V.

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[CrossRef] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Kim, J. K.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Kner, P.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Kögel, B.

Köhler, F.

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

Koyama, F.

Kroemer, H.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Lackner, M.

Larsson, A.

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

Li, G. S.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Li, M.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Liu, X.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Mateus, C.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Meissner, P.

Mereuta, A.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Mircea, A.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Moharam, M. G.

Müller, M.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

Nabiev, R. F.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Nakagawa, S.

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Nishiyama, N.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Ortsiefer, M.

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

Pesala, B.

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18(2), 694–699 (2010).
[CrossRef] [PubMed]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Rao, Y.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

Ronneberg, E.

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

Rosskopf, J.

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

Rudra, A.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Schwarzott, M.

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

Shau, R.

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

Stone, R. J.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Suruceanu, G.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Suzuki, Y.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Syrbu, A.

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

Winter, F.

Worland, D. P.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Xu, Y.

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

Yu, K.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Yuen, W.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Zah, C.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Zhang, D.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Zheng, T.

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

Zhou, Y.

C. Chase, Y. Zhou, and C. J. Chang-Hasnain, “Size effect of high contrast gratings in VCSELs,” Opt. Express 17(26), 24002–24007 (2009).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, and M. C. Amann, “Low-threshold index-guided 1.5 µm long-wavelength vertical-cavity surface-emitting laser with high efficiency,” Appl. Phys. Lett. 76(16), 2179 (2000).
[CrossRef]

S. Nakagawa, E. Hall, G. Almuneau, J. K. Kim, D. A. Buell, H. Kroemer, and L. A. Coldren, “88 °C, continuous-wave operation of apertured, intracavity contacted, 1.55 μm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 78(10), 1337 (2001).
[CrossRef]

Electron. Lett. (2)

W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, K. Yu, M. Jansen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett. 36(13), 1121–1123 (2000).
[CrossRef]

A. Syrbu, A. Mereuta, A. Mircea, A. Caliman, V. Iakovlev, C. Berseth, G. Suruceanu, A. Rudra, E. Deichsel, and E. Kapon, “1550 nm-band VCSEL 0.76 mW singlemode output power in 20–80°C temperature range,” Electron. Lett. 40(5), 306 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Haglund, J. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs With a Subwavelength Surface Grating,” IEEE J. Quantum Electron. 42(3), 231–240 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. Hu, X. Liu, M. Li, R. Bhat, and C. Zah, “Long-Wavelength Vertical-Cavity Surface-Emitting Lasers on InP With Lattice Matched AlGaInAs-InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1485–1499 (2009).
[CrossRef]

IEEE Photon. J. (1)

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M. Amann, and C. J. Chang-Hasnain, “Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. J. 2(3), 415–422 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Ortsiefer, M. Gorblich, Y. Xu, E. Ronneberg, J. Rosskopf, R. Shau, and M. Amann, “Polarization Control in Buried Tunnel Junction VCSELs Using a Birefringent Semiconductor/Dielectric Subwavelength Grating,” IEEE Photon. Technol. Lett. 22(1), 15–17 (2010).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-Band Mirror (1.12-1.62 µm) Using a Subwavelength Grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (2)

M. C. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

P. Gilet, N. Olivier, P. Grosse, K. Gilbert, A. Chelnokov, I. Chung, and J. Mørk, “High-index-contrast subwavelength grating VCSEL,” in Vertical-Cavity Surface-Emitting Lasers XIV, J. K. Guenter and K. D. Choquette, eds. (SPIE, 2010), Vol. 7615, p. 76150J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a 1550 nm VCSEL with a suspended TE-HCG in place of a typical top DBR. Current confinement is provided through the use of a proton-implant-defined aperture.

Fig. 2
Fig. 2

a) Reflectivity of the HCG as a function of wavelength and polarization. The grating is highly reflective for TE light (blue, light with electric field polarized along the direction of the grating), and much less so for TM light (red, light polarized perpendicular to the direction of the grating). b) Zoomed in reflectivity of the TE polarization. The grating is over 99% reflective over a bandwidth of 150 nm.

Fig. 3
Fig. 3

SEM images of a (a) a completed 1550 nm HCG VCSEL (b) Zoomed in image of the high contrast grating, which is just 195 nm thick.

Fig. 4
Fig. 4

a) Light-current (solid lines) and voltage-current (dashed lines) characteristics of a HCG VCSEL with a 13 µm proton implant aperture at various heat sink temperatures. Devices show over 1.1 mW output power at room temperature and operate continuous wave to >60° C. b) Spectrum of the same device under various heat sink temperatures. A wavelength shift of 0.12 nm/K is extracted.

Fig. 5
Fig. 5

a) Polarization-resolved light-current characteristics of a 1550 nm HCG VCSEL. A polarization suppression ratio of >20 dB is achieved, with the measurement limited by the polarizer. b) Near field intensity profile of the device at 2.5 X Ith. A FWHM of ~6.5 µm is obtained with a VCSEL with a proton implant aperture size of 15 µm.

Metrics