Abstract

We report on the design of a novel flexible very large mode area photonic crystal fibre for short pulse high peak power fibre laser and beam delivery applications. This fibre has an extremely large mode area exceeding 2500 µm2 when kept straight and over 1000 µm2 when bent over a 10 cm radius at a wavelength of 1064 nm. In addition our fibre exhibits very small fundamental mode bending loss below 10−2 dB/m. The large difference between the propagation loss levels of fundamental and higher order modes forces efficient single-mode guidance in the fibre core while bent. This allows using the fibre to build compact high power laser systems. The paper further explores the major features of this fibre including: the dependence of the mode field area on the fibre core shape, the influence of the bending radius and of the bending direction as well as the impact of manufacturing tolerances on the fibre specifications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6088 .
    [CrossRef] [PubMed]
  2. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30(20), 2754–2756 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-20-2754 .
    [CrossRef] [PubMed]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
    [CrossRef] [PubMed]
  4. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
    [CrossRef]
  5. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-12-4729 .
    [CrossRef]
  6. A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres, (Kluwer Academic Publishers, Boston, MA, 2003)
  7. T. W. Wu, L. Dong, and H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4278 .
    [CrossRef] [PubMed]
  8. B. G. Ward, “Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture,” Opt. Express 16(12), 8532–8548 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8532 .
    [CrossRef] [PubMed]
  9. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1794 .
    [CrossRef] [PubMed]
  10. http://www.lumerical.com/mode.php
  11. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers,” Opt. Express 10(1), 54–59 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-1-54 .
    [PubMed]
  12. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13547 .
    [CrossRef] [PubMed]
  13. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
    [CrossRef] [PubMed]
  14. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7342 .
    [CrossRef] [PubMed]
  15. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-69 .
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

2006 (4)

2005 (3)

2004 (1)

2002 (1)

Bassi, P.

Bellanca, G.

Berghmans, F.

Dong, L.

Ermeneux, S.

Fini, J.

Fini, J. M.

Florous, N. J.

Fogli, F.

Golojuch, G.

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Jeong, Y.

Koshiba, M.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “131 W 220 fs fiber laser system,” Opt. Lett. 30(20), 2754–2756 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-20-2754 .
[CrossRef] [PubMed]

Limpert, J.

Martynkien, T.

Murao, T.

Nasilowski, T.

Nilsson, J.

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Olszewski, J.

Ortac, B.

Payne, D.

Röser, F.

Rothhard, J.

Rothhardt, J.

Russell, P. S. J.

Saccomandi, L.

Sahu, J.

Saitoh, K.

Salin, F.

Schmidt, O.

Schreiber, T.

Szpulak, M.

Thienpont, H.

Trillo, S.

Tsuchida, Y.

Tünnermann, A.

Urbanczyk, W.

Ward, B. G.

Winful, H.

Wu, T. W.

Yvernault, P.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Opt. Express (10)

T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-13547 .
[CrossRef] [PubMed]

T. W. Wu, L. Dong, and H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4278 .
[CrossRef] [PubMed]

B. G. Ward, “Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture,” Opt. Express 16(12), 8532–8548 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8532 .
[CrossRef] [PubMed]

F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers,” Opt. Express 10(1), 54–59 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-1-54 .
[PubMed]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6088 .
[CrossRef] [PubMed]

J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
[CrossRef] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-69 .
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
[CrossRef] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7342 .
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1794 .
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres, (Kluwer Academic Publishers, Boston, MA, 2003)

http://www.lumerical.com/mode.php

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic structure of large-core PCF with low bending loss. (ds – small air holes diameter, dl - large air holes diameter, Λ - lattice constant / pitch).

Fig. 2
Fig. 2

Good confinement of FM (left picture) and leaking of HOM (right picture) in the bent fibre with the large holes at the outside of the bend.

Fig. 3
Fig. 3

Optimized XLMA PCF design (ds = 5.2 µm, dl = 9.2 µm, Λ = 17 µm).

Fig. 4
Fig. 4

FM bending loss (Rbend = 10 cm) as a function of small and large air holes diameters.

Fig. 5
Fig. 5

Second order mode bending loss (Rbend = 10 cm) as a function of small and large air holes diameters.

Fig. 6
Fig. 6

Bending loss of FM and HOMs (Rbend = 10 cm) as a function of bend orientation. The inset shows the angle θ defining the orientation.

Fig. 7
Fig. 7

Bending loss of FM and HOMs as a function of bend radius.

Fig. 8
Fig. 8

MFA as a function of the hexagonal core radius (Rhex) for two orthogonal bend orientations and a 10 cm bending radius.

Fig. 9
Fig. 9

MFA as a function of micro-structure radius RPCF for structures with different core shapes.

Fig. 10
Fig. 10

The XLMA fibre with low bending loss. The small and large air holes have a diameter of 4.4 µm and 9.6 µm, respectively. The lattice constant is 16 µm.

Fig. 11
Fig. 11

Bending loss of the fibre structure shown in the inset as a function of bend orientation for a bending radius Rbend = 10 cm.

Tables (1)

Tables Icon

Table 1 Parameters of the optimized SM XLMA fibres with low bending loss calculated for a bending radius Rbend = 10 cm and a wavelength λ = 1064 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

M F A = ( A | E | 2 d A ) 2 A | E | 4 d A ,

Metrics