Abstract

Resonant electromagnetic fields in stacked complementary plasmonic crystal slabs (sc-PlCSs) are numerically explored in subwavelength dimensions. It is found that the local plasmon resonances in the sc-PlCSs are composite states of locally enhanced electric and magnetic fields. Two sc-PlCSs are analyzed in this paper and it is shown that each sc-PlCS realizes a resonant electromagnetic state suggested by one of Maxwell equations. It is moreover clarified that the local plasmons open efficient paths of Poynting flux, those result in high-contrast polarized transmission.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  3. W. A. Murray, and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
    [CrossRef]
  4. C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007) (and references therein).
    [CrossRef] [PubMed]
  5. B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein).
    [CrossRef]
  6. W.-M. Que, and G. Kirczenow, “Theory of plasmons in lateral multiwire superlattices,” Phys. Rev. B 37, 7153–7156 (1988).
    [CrossRef]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
    [CrossRef] [PubMed]
  8. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
    [CrossRef]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef] [PubMed]
  10. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef] [PubMed]
  11. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave propagation rotation with double layered metal grating of complementary chiral patterns,” Opt. Express 15, 11117–11125 (2007).
    [CrossRef] [PubMed]
  12. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
    [CrossRef] [PubMed]
  13. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  14. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [CrossRef] [PubMed]
  15. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Sterometamaterials,” Nat. Photonics 3, 157–162 (2009).
    [CrossRef]
  16. M. Iwanaga, “Optically deep asymmetric one-dimensional plasmonic crystal slabs: Genetic algorithm approach,” J. Opt. Soc. Am. B 26, 1111–1118 (2009).
    [CrossRef]
  17. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
    [CrossRef] [PubMed]
  18. M. Iwanaga, “Subwavelength orthogonal polarization rotator,” Opt. Lett. 35, 109–111 (2010).
    [CrossRef] [PubMed]
  19. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
    [CrossRef]
  20. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
    [CrossRef] [PubMed]
  21. L. Wang, and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 216105 (2007).
  22. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
    [CrossRef] [PubMed]
  23. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16, 7756–7766 (2008).
    [CrossRef] [PubMed]
  24. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [CrossRef]
  25. L. Li, “Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [CrossRef]
  26. A. D. Rakić, A. B. Djurušić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  27. COMSOL Multiphysics, http://www.comsol.com.

2010 (2)

M. Iwanaga, “Subwavelength orthogonal polarization rotator,” Opt. Lett. 35, 109–111 (2010).
[CrossRef] [PubMed]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
[CrossRef]

2009 (7)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Sterometamaterials,” Nat. Photonics 3, 157–162 (2009).
[CrossRef]

M. Iwanaga, “Optically deep asymmetric one-dimensional plasmonic crystal slabs: Genetic algorithm approach,” J. Opt. Soc. Am. B 26, 1111–1118 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

2008 (4)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16, 7756–7766 (2008).
[CrossRef] [PubMed]

2007 (4)

L. Wang, and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 216105 (2007).

N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave propagation rotation with double layered metal grating of complementary chiral patterns,” Opt. Express 15, 11117–11125 (2007).
[CrossRef] [PubMed]

W. A. Murray, and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007) (and references therein).
[CrossRef] [PubMed]

2006 (2)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

2005 (1)

S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1988 (1)

W.-M. Que, and G. Kirczenow, “Theory of plasmons in lateral multiwire superlattices,” Phys. Rev. B 37, 7153–7156 (1988).
[CrossRef]

1985 (1)

B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein).
[CrossRef]

Atwater, H. A.

S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. A. Murray, and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

Camley, R. E.

B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef] [PubMed]

Djurušic, A. B.

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Ebbesen, T. W.

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007) (and references therein).
[CrossRef] [PubMed]

Elazar, J. M.

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Fu, L.

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Genet, C.

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007) (and references therein).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

Giessen, H.

Guo, H.

Iwanaga, M.

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Johnson, B. L.

B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein).
[CrossRef]

Kanda, N.

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Kirczenow, G.

W.-M. Que, and G. Kirczenow, “Theory of plasmons in lateral multiwire superlattices,” Phys. Rev. B 37, 7153–7156 (1988).
[CrossRef]

Konishi, K.

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Kriegler, C. E.

Kuwata-Gonokami, M.

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Li, L.

Linden, S.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Sterometamaterials,” Nat. Photonics 3, 157–162 (2009).
[CrossRef]

Liu, N.

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Majewski, M. L.

Meyrath, T. P.

Murray, W. A.

W. A. Murray, and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Park, Y.-S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Que, W.-M.

W.-M. Que, and G. Kirczenow, “Theory of plasmons in lateral multiwire superlattices,” Phys. Rev. B 37, 7153–7156 (1988).
[CrossRef]

Rakic, A. D.

Rill, M. S.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Schweizer, H.

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Sukoulis, C. M.

Thiel, M.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

von Freymann, G.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Wang, L.

L. Wang, and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 216105 (2007).

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Wegener, M.

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef] [PubMed]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Weiler, J. T.

B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein).
[CrossRef]

Xu, X.

L. Wang, and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 216105 (2007).

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Zentgraf, T.

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16, 7756–7766 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

Zhang, W.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Sukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[CrossRef] [PubMed]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Sterometamaterials,” Nat. Photonics 3, 157–162 (2009).
[CrossRef]

Adv. Mater. (2)

W. A. Murray, and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007).
[CrossRef]

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. 21, 4680–4682 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
[CrossRef]

L. Wang, and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 216105 (2007).

J. Appl. Phys. (1)

S. A. Maier, and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361–364 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7, 543–546 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Sterometamaterials,” Nat. Photonics 3, 157–162 (2009).
[CrossRef]

Nature (3)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–380 (2008).
[CrossRef] [PubMed]

C. Genet, and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007) (and references therein).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

B. L. Johnson, J. T. Weiler, and R. E. Camley, “Bulk and surface plasmons and localization effects in finite superlattices,” Phys. Rev. B 32, 6544–6553 (1985) (and references therein).
[CrossRef]

W.-M. Que, and G. Kirczenow, “Theory of plasmons in lateral multiwire superlattices,” Phys. Rev. B 37, 7153–7156 (1988).
[CrossRef]

Phys. Rev. Lett. (2)

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

COMSOL Multiphysics, http://www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic drawing of sc-PlCS of butterfly-shaped structures. Gray represents metal (silver), white meas air, and pale blue stands for dielectric (EB resist). (b) The unit cell extracted from (a). The second layer of EB resist and air hole is omitted for clarity (dashed lines). (c) The unit cell prepared to execute the numerical implementation. The dimension is given in nm. The edges of metallic parts are drawn with blue lines. (d) Transmittance spectra, evaluated numerically, under normal incidence on the xy plane. Red solid line corresponds to the spectrum under y polarization and black dashed line to x polarization. (e) The ratio of transmittance, Ty /Tx .

Fig. 2.
Fig. 2.

EM fields in butterfly-shaped PlCS at a moment. (a) Electric field distributions under y-polarized incident plane wave. Color plot on the slice is the intensity of electric fields at the center of the unit cell. The unit of the intensity is defined by setting the input power flux to be 1 at the input xy square. Purple cones are electric field vectors. Black arrows indicates the propagation direction of the incident plane wave on the slice. (b) Magnetic field distributions displayed in a similar way to (a). Red cones stand for magnetic field vectors. (c) Poynting flux on resonance under y polarization. The slice corresponds to those in (a) and (b). White arrows represent Poynting vectors. (d) Off-resonant Poynting flux under x polarization. The slice is taken in the way same with (c).

Fig. 3.
Fig. 3.

(a) Color plot of time-averaged energy-density loss in the metallic part of the third layer. Magnetic field vectors (red arrows) are plotted around the metallic part in the lower y range. (b) Schematic diagram of subwavelength EM dynamics in the unit cell of butterfly-shaped air hole and metal.

Fig. 4.
Fig. 4.

(a) Schematic drawing of the unit cell of II-shaped air holes. Extracted the unit cell in a similar way to Fig. 1(b). The second layer (dashed lines) of EB resist and II-shaped air holes is omitted for clarity. (b) The unit cell for the numerical implementation, similar to Fig. 1(c). (c) Detailed dimensions in the unit cell, shown in the top view. The unit is nm. (d) Transmittance spectra under x polarization (black dashed line) and y polarization (red solid line). Note that Ty is almost zero. (e) Ratio of transmittance, Tx /Ty .

Fig. 5.
Fig. 5.

EM fields in II-shape PlCS at a moment. (a) Color slice of the electric-field intensity under x polarization. The unit of the intensity is defined similarly to Fig. 2. Purple cones are electric field vectors on the color slice. Black arrows indicates the propagation direction of the incident plane wave. (b) Magnetic fields, represented in a similar way to (a). (c) Poynting flux on resonance under x polarization. The slice is taken similarly to (a) and (b). White arrows represent Poynting vector. (d) Off-resonant Poynting flux under y polarization. The slice is taken in the way same with (c).

Fig. 6.
Fig. 6.

Schematic diagram of the whole subwavelength EM dynamics on resonance under x polarization, summing up Fig. 5(a)–(c). Blue arrows indicate the flow of Poynting flux. Purple arrows are electric field vectors and flows. Red arrows present magnetic field vectors.

Tables (1)

Tables Icon

Table 1. Enhancement factors of sc-PlCSs. The factors are defined by the ratio of local EM-field intensity to the input intensity. The local intensities are read out from Figs. 2 and 5. The details are described in the text

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× H = ( ε o ε m E ) t
× E = ( μ o H ) t

Metrics