Abstract

We introduce a novel photonic crystal fiber (PCF) temperature sensor that is based on intensity modulation and liquid ethanol filling of air holes with index-guiding PCF. The mode field, the effective refractive index and the confinement loss of PCF were all found to become highly temperature-dependent when the thermo-optic coefficient of the liquid ethanol used is higher than that of silicon dioxide and this temperature dependence is an increasing function of the d/Λ ratio and the input wavelength. All the experiments and simulations are discussed in this paper and the temperature sensitivity of transmission power was experimentally determined to be 0.315 dB/°C for a 10-cm long PCF.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  5. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [CrossRef]
  6. R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, “Sensitivity of holey fiber based sensors,” in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals, 340–343 (2003).
  7. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-9-13-698 .
    [CrossRef] [PubMed]
  8. O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
    [CrossRef]
  9. W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
    [CrossRef]
  10. A. Michie, J. Canning, K. Lyytikäinen, M. Aslund, and J. Digweed, “Temperature independent highly birefringent photonic crystal fibre,” Opt. Express 12(21), 5160–5165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-21-5160 .
    [CrossRef] [PubMed]
  11. R. T. Bise, R. S. Windeler, K. S. Kranz, et al. “Tunable photonic band gap fiber,” OFC 2002, California, USA, 466–468 (2002).
  12. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-11-20-2589 .
    [CrossRef] [PubMed]
  13. F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [CrossRef]
  14. M. W. Haakestad, M. D. Nielsen, and ., “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
    [CrossRef]
  15. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-24-5857 .
    [CrossRef] [PubMed]
  16. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).
  17. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

2007 (2)

W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

2005 (1)

M. W. Haakestad, M. D. Nielsen, and ., “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

2004 (4)

2003 (3)

2001 (1)

1997 (1)

1996 (1)

Alkeskjold, T. T.

Anawati, A.

Araujo, F. M.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Aslund, M.

Atkin, D. M.

Birks, T. A.

Bjarklev, A.

Broeng, J.

Canning, J.

Digweed, J.

Du, F.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Eggleton, B. J.

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Gu, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

Haakestad, M. W.

M. W. Haakestad, M. D. Nielsen, and ., “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Hale, A.

Hermann, D.

Hermann, D. S.

Hong, K. S.

W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
[CrossRef]

Jin, W.

W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
[CrossRef]

Kerbage, C.

Knight, J. C.

Kuhlmey, B. T.

Lægsgaard, J.

Larsen, T. T.

Li, J.

Liao, Y. B.

W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
[CrossRef]

Lu, Y. Q.

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Lyytikäinen, K.

Michie, A.

Nielsen, M. D.

M. W. Haakestad, M. D. Nielsen, and ., “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Russell, P. S.

Russell, P. St. J.

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

Shi, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

Westbrook, P. S.

Windeler, R. S.

Wu, D. K. C.

Wu, S. T.

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-24-5857 .
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Xiao, L. M.

W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
[CrossRef]

Zhang, J. Z.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

Appl. Phys. Lett. (3)

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

F. Du, Y. Q. Lu, and S. T. Wu, “Electrically tunable liquid crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 1–3 (2007).

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, M. D. Nielsen, and ., “Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(4), 819–821 (2005).
[CrossRef]

Laser Photonics Rev. (1)

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (1)

W. Jin, L. M. Xiao, K. S. Hong, and Y. B. Liao, “Novel devices and sensors based on microstructured optical fibers,” Proc. SPIE 6830, 68302C (2007).
[CrossRef]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (2)

R. Kotynski, T. Nasilowski, M. Antkowiak, F. Berghmans, and H. Thienpont, “Sensitivity of holey fiber based sensors,” in Proceedings of 5th International Conference on Transparent Optical Networks and 2nd European Symposium on Photonic Crystals, 340–343 (2003).

R. T. Bise, R. S. Windeler, K. S. Kranz, et al. “Tunable photonic band gap fiber,” OFC 2002, California, USA, 466–468 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

After introducing liquid ethanol into the holes, The mode effective index (a) and the confinement loss (b) versus wavelength by varying the air-filling ratios.

Fig. 2
Fig. 2

The confinement loss as functions of temperature at 800 nm and 1550 nm.

Fig. 3
Fig. 3

Optical microscopic images of cross-sections of three PCFs, (a): PCF1, (b): PCF2 and (c): PCF3. The dark circles are air holes while the bright regions are silica. PCF1 with air-filling fraction d/Λ = 0.9, PCF2 with air-filling fraction d/Λ = 0.95 for inner air holes, PCF3 with air-filling fraction d/Λ = 0.64.

Fig. 4
Fig. 4

The scheme of the experimental setup for temperature sensor.

Fig. 5
Fig. 5

(a) Temperature dependence of transmission power for PCF3 at 1550 nm, (squares: Theoretical data; triangle: Experimental data); (b) Temperature dependence of transmission power change for PCF3 at different wavelengths (Experimental data).

Fig. 6
Fig. 6

Temperature dependence of transmission power for three PCFs at 1550 nm;

Fig. 7
Fig. 7

(a) Transmission power vs temperature for PCF1 at different lengths, squares: 19 cm; circles: 10 cm; (b) Temperature dependence of transmission power at the wavelength of 1550 nm during increasing and decreasing temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P L = 20 log 10 ( e ) k 0 Im [ n e f f ] L ,

Metrics