Abstract

In many photonics applications, especially in optical fibre based systems, the state of polarization of light remains so far an elusive uncontrolled variable, which can dramatically affect the performances of that systems and which one would like to control as finely as possible. Here, we experimentally demonstrate light-by-light polarization control via a nonlinear effect occurring in single mode optical fibre. We observe a polarization attraction and stabilization of a 10 Gbit/s optical telecommunication signal around 1550 nm. We also validate the potentiality of the device to annihilate very fast nanosecond polarization bursts. This result confirms yet another fascinating possibility to all-optical control the light properties in optical fibre.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., (Academic Press, New York, 2007).
  2. G. P. Agrawal, Applications of Nonlinear Fiber Optics,” 2nd ed., (Academic Press, New York, 2008).
  3. E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett. 12(11), 888–890 (1987).
    [CrossRef] [PubMed]
  4. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  6. A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
    [CrossRef]
  7. A. Galtarossa, L. Palmieri, and A. Pizzinat, “Optimized Spinning Design for Low PMD Fibers: An Analytical Approach,” J. Lightwave Technol. 19(10), 1502–1512 (2001).
    [CrossRef]
  8. I. P. Kaminow, and T. Li, Optical fiber Telecommunications IV-B Systems and Impairments, 4th ed., (Academic Press, San Diego, 2002).
  9. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
    [CrossRef]
  10. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
    [CrossRef] [PubMed]
  11. J. Garnier, J. Fatome, and G. Le Meur, “Statistical analysis of pulse propagation driven by polarization-mode dispersion,” J. Opt. Soc. Am. B 19(9), 1968–1977 (2002).
    [CrossRef]
  12. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997).
    [CrossRef]
  13. M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiberoptic systems” IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 413–414 (2005).
  14. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  15. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  16. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides,” J. Lightwave Technol. 18(10), 1402–1411 (2000).
    [CrossRef]
  17. N. Hitoshi, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express 12(26), 6606–6614 (2004).
    [CrossRef] [PubMed]
  18. H. C. Lefevre, “Single-Mode Fibre Fractional Wave Devices and Polarisation Controllers,” Electron. Lett. 16(20), 778–780 (1980).
    [CrossRef]
  19. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
    [CrossRef]
  20. B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
    [CrossRef]
  21. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17(2), 947–955 (2009).
    [CrossRef] [PubMed]
  22. L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification”, in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.
  23. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [CrossRef] [PubMed]
  24. J. Fatome, S. Pitois, and G. Millot, “Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers,” Opt. Express 17(15), 12612–12618 (2009).
    [CrossRef] [PubMed]
  25. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25(4), 257–259 (2000).
    [CrossRef]
  26. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18(4), 432–443 (2001).
    [CrossRef]
  27. A. Picozzi, “Spontaneous polarization induced by natural thermalization of incoherent light,” Opt. Express 16(22), 17171–17185 (2008).
    [CrossRef] [PubMed]
  28. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
    [CrossRef] [PubMed]
  29. S. Pitois, A. Sauter, and G. Millot, “Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers,” Opt. Lett. 29(6), 599–601 (2004).
    [CrossRef] [PubMed]
  30. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
    [CrossRef] [PubMed]

2010

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35(12), 2025–2027 (2010).
[CrossRef] [PubMed]

2009

2008

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

A. Picozzi, “Spontaneous polarization induced by natural thermalization of incoherent light,” Opt. Express 16(22), 17171–17185 (2008).
[CrossRef] [PubMed]

S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16(9), 6646–6651 (2008).
[CrossRef] [PubMed]

2006

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

2004

2002

2001

2000

1997

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997).
[CrossRef]

1987

1986

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

1981

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[CrossRef]

1980

H. C. Lefevre, “Single-Mode Fibre Fractional Wave Devices and Polarisation Controllers,” Electron. Lett. 16(20), 778–780 (1980).
[CrossRef]

Asakawa, K.

Assémat, E.

Barlow, A. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[CrossRef]

Becker, P. C.

Bennink, R. S.

Boyd, R. W.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Cirigliano, M.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Desurvire, E.

Doll, T.

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Eyal, A.

Fatome, J.

Ferrario, M.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Fisher, R. A.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Galtarossa, A.

Garnier, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Gisin, N.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997).
[CrossRef]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Hadley, M. R.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[CrossRef]

Heebner, J. E.

Hidayat, A.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Hitoshi, N.

Huttner, B.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997).
[CrossRef]

Ikeda, N.

Inoue, K.

Ishikawa, H.

Jauslin, H. R.

Kanamoto, K.

Koch, B.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Lagrange, S.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Le Meur, G.

Lefevre, H. C.

H. C. Lefevre, “Single-Mode Fibre Fractional Wave Devices and Polarisation Controllers,” Electron. Lett. 16(20), 778–780 (1980).
[CrossRef]

Lichtinger, M.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Loncar, M.

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Mansfield, R. J.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[CrossRef]

Marazzi, L.

Martelli, P.

Martinelli, M.

Millot, G.

Mirvoda, V.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Nakamura, Y.

Noè, R.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Ohkouchi, S.

Palmieri, L.

Payne, D. N.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[CrossRef]

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Picozzi, A.

Pietralunga, S. M.

Pitois, S.

Pizzinat, A.

Poole, C. D.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Sandel, D.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Sauter, A.

Scherer,, A.

Simpson, J. R.

Sugimoto, Y.

Sugny, D.

Tanaka, Y.

Thévenaz, L.

Tur, M.

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Vuckovic, J.

Wabnitz, S.

Wagner, R. E.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

Watanabe, Y.

Zadok, A.

Zhang, H.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

Zilka, E.

Electron. Lett.

A. J. Barlow, D. N. Payne, M. R. Hadley, and R. J. Mansfield, “Production of single-mode fibers with negligible intrinsic birefringence and polarization mode dispersion,” Electron. Lett. 17(20), 725–726 (1981).
[CrossRef]

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986).
[CrossRef]

H. C. Lefevre, “Single-Mode Fibre Fractional Wave Devices and Polarisation Controllers,” Electron. Lett. 16(20), 778–780 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Photon. Technol. Lett. 20(12), 961–963 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Opt. Commun.

N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., (Academic Press, New York, 2007).

G. P. Agrawal, Applications of Nonlinear Fiber Optics,” 2nd ed., (Academic Press, New York, 2008).

I. P. Kaminow, and T. Li, Optical fiber Telecommunications IV-B Systems and Impairments, 4th ed., (Academic Press, San Diego, 2002).

M. Boroditsky, M. Brodsky, N. J. Frigo, P. Magill, and H. Rosenfeldt, “Polarization dynamics in installed fiberoptic systems” IEEE LEOS Annual Meeting Conference Proceedings (LEOS), 413–414 (2005).

L. Thevenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification”, in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) State of polarization at the input of a first isotropic section of fibre (b) Output of the first section (c) Input of the following section with change of the pump polarization (d) output of the section.

Fig. 2
Fig. 2

Experimental setup. Pol Polarizer.

Fig. 3
Fig. 3

Experimental observation of the polarization stabilization effect on the Poincaré sphere: (a) polarization of the signal wave at the system input (b) Signal polarization after nonlinear interaction with the counter-propagating pump wave. The pump and signal powers were 600 mW and 300 mW, respectively (c) Output polarization of the pump wave.

Fig. 4
Fig. 4

Eye-diagrams of the 10-Gbit/s signal at the system output and monitored behind a polarizer (a) without and (b) in presence of the counter-propagating pump beam.

Fig. 5
Fig. 5

(a) Evolution of the bit error rate as a function of average power in back-to-back configuration (blue crosses); at the output of the system, with polarization scrambling and after a polarizer with (red circles) and without (green triangle) the counter-propagating pump beam (b) Intensity profile of the 6-ns polarization burst observed after a polarizer by means of a low bandwidth oscilloscope, without (blue line) and with (red line) counter-propagating pump wave.

Metrics