Abstract

We report a prototype, 4×4 (4 input/4 output) label processing and switching sub-system for 10-Gb/s asynchronous burst variable-length optical packets. With the prototype, we perform a 4×4 optical packet switching demonstration, achieving error-free (BER<10−12) label processing and switching operation for all possible input/output combinations (16 switching paths) simultaneously. Power consumption and latency of the entire, self-contained sub-system is 83 W (includes fan power) and 300 ns, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Neilson, “Photonics for switching and routing,” IEEE J. Sel. Top. Quantum Electron. 12(4), 669–678 (2006).
    [CrossRef]
  2. R. Takahashi, T. Nakahara, K. Takahata, H. Takenouchi, T. Yasui, N. Kondo, and H. Suzuki, “Ultrafast optoelectronic packet processing for asynchronous, optical-packet-switched networks,” J. Opt. Netw. 3(12), 914–930 (2004).
    [CrossRef]
  3. R. Takahashi, R. Urata, H. Takenouchi, and T. Nakahara, “Hybrid optoelectronic router for asynchronous optical packets,” in Photonics in Switching Conference, Technical Digest (CD) (IEEE, 2009), paper WeII2–2.
  4. S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
    [CrossRef]
  5. D. Wolfson, V. Lal, M. Masanovic, H. N. Poulsen, C. Coldren, G. Epps, D. Civello, P. Donner, and D. J. Blumenthal, “All-optical asynchronous variable-length optically labeled 40 Gbps packet switch,” in 31st European Conference on Optical Communication (ECOC 2005), Technical Digest (CD) (IET, 2005), paper Th4.5.1.
  6. D. Chiaroni, “Optical packet add/drop multiplexers for packet ring networks,” in 34th European Conference on Optical Communication (ECOC 2008), Technical Digest (CD) (IEEE, 2008), paper Th.2.E.1.
  7. R. Urata, R. Takahashi, T. Suemitsu, T. Nakahara, and H. Suzuki, “An optically clocked transistor array for high-speed asynchronous label swapping: 40 Gb/s and beyond,” J. Lightwave Technol. 26(6), 692–703 (2008).
    [CrossRef]
  8. T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
    [CrossRef]
  9. T. Nakahara, R. Takahashi, T. Yasui, and H. Suzuki, “Optical clock-pulse-train generator for processing preamble-free asynchronous optical packets,” IEEE Photon. Technol. Lett. 18(17), 1849–1851 (2006).
    [CrossRef]

2009 (1)

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

2008 (1)

2006 (3)

S. J. B. Yoo, “Optical packet and burst switching technologies for the future photonic internet,” J. Lightwave Technol. 24(12), 4468–4492 (2006).
[CrossRef]

D. T. Neilson, “Photonics for switching and routing,” IEEE J. Sel. Top. Quantum Electron. 12(4), 669–678 (2006).
[CrossRef]

T. Nakahara, R. Takahashi, T. Yasui, and H. Suzuki, “Optical clock-pulse-train generator for processing preamble-free asynchronous optical packets,” IEEE Photon. Technol. Lett. 18(17), 1849–1851 (2006).
[CrossRef]

2004 (1)

Kakitsuka, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

Kondo, N.

Kondo, Y.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

Matsuo, S.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

Nakahara, T.

Neilson, D. T.

D. T. Neilson, “Photonics for switching and routing,” IEEE J. Sel. Top. Quantum Electron. 12(4), 669–678 (2006).
[CrossRef]

Sato, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

Segawa, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

Suemitsu, T.

Suzuki, H.

Takahashi, R.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

R. Urata, R. Takahashi, T. Suemitsu, T. Nakahara, and H. Suzuki, “An optically clocked transistor array for high-speed asynchronous label swapping: 40 Gb/s and beyond,” J. Lightwave Technol. 26(6), 692–703 (2008).
[CrossRef]

T. Nakahara, R. Takahashi, T. Yasui, and H. Suzuki, “Optical clock-pulse-train generator for processing preamble-free asynchronous optical packets,” IEEE Photon. Technol. Lett. 18(17), 1849–1851 (2006).
[CrossRef]

R. Takahashi, T. Nakahara, K. Takahata, H. Takenouchi, T. Yasui, N. Kondo, and H. Suzuki, “Ultrafast optoelectronic packet processing for asynchronous, optical-packet-switched networks,” J. Opt. Netw. 3(12), 914–930 (2004).
[CrossRef]

Takahata, K.

Takenouchi, H.

Urata, R.

Yasui, T.

T. Nakahara, R. Takahashi, T. Yasui, and H. Suzuki, “Optical clock-pulse-train generator for processing preamble-free asynchronous optical packets,” IEEE Photon. Technol. Lett. 18(17), 1849–1851 (2006).
[CrossRef]

R. Takahashi, T. Nakahara, K. Takahata, H. Takenouchi, T. Yasui, N. Kondo, and H. Suzuki, “Ultrafast optoelectronic packet processing for asynchronous, optical-packet-switched networks,” J. Opt. Netw. 3(12), 914–930 (2004).
[CrossRef]

Yoo, S. J. B.

IEEE J. Quantum Electron. (1)

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron. 45(7), 892–899 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. T. Neilson, “Photonics for switching and routing,” IEEE J. Sel. Top. Quantum Electron. 12(4), 669–678 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Nakahara, R. Takahashi, T. Yasui, and H. Suzuki, “Optical clock-pulse-train generator for processing preamble-free asynchronous optical packets,” IEEE Photon. Technol. Lett. 18(17), 1849–1851 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Netw. (1)

Other (3)

R. Takahashi, R. Urata, H. Takenouchi, and T. Nakahara, “Hybrid optoelectronic router for asynchronous optical packets,” in Photonics in Switching Conference, Technical Digest (CD) (IEEE, 2009), paper WeII2–2.

D. Wolfson, V. Lal, M. Masanovic, H. N. Poulsen, C. Coldren, G. Epps, D. Civello, P. Donner, and D. J. Blumenthal, “All-optical asynchronous variable-length optically labeled 40 Gbps packet switch,” in 31st European Conference on Optical Communication (ECOC 2005), Technical Digest (CD) (IET, 2005), paper Th4.5.1.

D. Chiaroni, “Optical packet add/drop multiplexers for packet ring networks,” in 34th European Conference on Optical Communication (ECOC 2008), Technical Digest (CD) (IEEE, 2008), paper Th.2.E.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of proposed OPS node. AWG: arrayed waveguide grating. SPC: serial-to-parallel converter. PSC: parallel-to-serial converter. Each of the overlayed planes (containing four label processors and an optical switch in the figure) represents a wavelength layer of the node.

Fig. 2
Fig. 2

Diagrams of (a) the entire 4 × 4 label processing and switching sub-system, (b) a single label processor, and (c) the 4 × 4 switch. The optical packet and control signal output from the label processor are entered into the APD-TIA and DRR TLD of the switch, respectively.

Fig. 3
Fig. 3

Photograph of the prototype 4 × 4 sub-system, housed in a 2U shelf (43 × 76 × 8.5 cm3) and powered by a single 24 V power supply connection on the back panel. Two fans were mounted on the back panel for cooling.

Fig. 4
Fig. 4

(a) Input and (c) output packet stream waveforms for IN1, OUT1. (b), (d), and (e) show the waveform enlarged at the head of each packet, and the corresponding 16-bit label. Similar waveforms were obtained for the other inputs/outputs of the sub-system (IN2-4/OUT2-4).

Fig. 5
Fig. 5

BER measurement results for all 16 output packets shown in Fig. 2(a). Each line indicates results for a particular output packet and the switching path it traversed. Power penalty varied from 0.25 to 1.7 dB.

Metrics