Abstract

In this communication, we show how a short-pitch diffractive structure can be used as a low-cost high sensitivity device for refractive index measurements with sensitivity of 10−2. The device consists of a photo-resist diffraction grating put in optical contact with a hollow prism used as a container for a test material. Its main advantage is the possibility to monitor the composition of solids, fluids and gases in real time. Knowledge of optical parameters of a system with high accuracy can be vital when working in the biological/medical field.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Liu and X. W. Sun, “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications,” Adv. OptoElectron. 2008, 684349 (2008) and references therein.
  2. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
    [CrossRef] [PubMed]
  3. A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
    [CrossRef] [PubMed]
  4. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
    [CrossRef] [PubMed]
  5. A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
    [CrossRef]
  6. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [CrossRef] [PubMed]
  7. R. L. Sutherland, D. M. Brandelik, and C. K. Shepherd, “Device and Method for Detection and Identification of Biological Agents,” United States Patent No. 7,186,567 (2007).
  8. D. Malacara, Geometrical and Instrumental Optics, (Methods in Exp. Phys., Academic Press, 1988) Vol. 25.
  9. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, (Elsevier Science Pub Co., 1987).
  10. S. A. Gonchukov, Y. B. Lazarev, and A. A. Podkolzin, “Laser Refractometry of Biological Fluids,” Instrum. Exp. Tech. 43(6), 826–828 (2000).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  12. Grating solver development company. www.gsolver.com .
  13. R. Caputo, L. De Sio, M. J. J. Jak, E. J. Hornix, D. K. G. de Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
    [CrossRef] [PubMed]

2010

2009

A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
[CrossRef]

2008

2007

2005

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

2000

S. A. Gonchukov, Y. B. Lazarev, and A. A. Podkolzin, “Laser Refractometry of Biological Fluids,” Instrum. Exp. Tech. 43(6), 826–828 (2000).
[CrossRef]

Asquini, R.

Barna, V.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

Bartolino, R.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

Bastiaansen, C. W. M.

A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
[CrossRef]

Beccherelli, R.

Bricker, R. L.

Broer, D. J.

A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
[CrossRef]

Bunning, T. J.

Caputo, R.

Cornelissen, H. J.

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

d’Alessandro, A.

de Boer, D. K. G.

De Luca, A.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

De Sio, L.

Donisi, D.

Gonchukov, S. A.

S. A. Gonchukov, Y. B. Lazarev, and A. A. Podkolzin, “Laser Refractometry of Biological Fluids,” Instrum. Exp. Tech. 43(6), 826–828 (2000).
[CrossRef]

Green, L.

Hornix, E. J.

Jak, M. J. J.

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Lazarev, Y. B.

S. A. Gonchukov, Y. B. Lazarev, and A. A. Podkolzin, “Laser Refractometry of Biological Fluids,” Instrum. Exp. Tech. 43(6), 826–828 (2000).
[CrossRef]

Li, Q.

Liu, Y. J.

Y. J. Liu and X. W. Sun, “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications,” Adv. OptoElectron. 2008, 684349 (2008) and references therein.

Natarajan, L. V.

Podkolzin, A. A.

S. A. Gonchukov, Y. B. Lazarev, and A. A. Podkolzin, “Laser Refractometry of Biological Fluids,” Instrum. Exp. Tech. 43(6), 826–828 (2000).
[CrossRef]

Prenen, A. M.

A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
[CrossRef]

Price, G. N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

Scaramuzza, N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

Strangi, G.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

Sun, X .W.

Y. J. Liu and X. W. Sun, “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications,” Adv. OptoElectron. 2008, 684349 (2008) and references therein.

Tondiglia, V. P.

Umeton, C.

A. d’Alessandro, D. Donisi, L. De Sio, R. Beccherelli, R. Asquini, R. Caputo, and C. Umeton, “Tunable integrated optical filter made of a glass ion-exchanged waveguide and an electro-optic composite holographic grating,” Opt. Express 16(13), 9254–9260 (2008).
[CrossRef] [PubMed]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

van der Werf, J. C. A. H.

A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
[CrossRef]

Versace, C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

White, T. J.

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Adv. Mater.

A. M. Prenen, J. C. A. H. van der Werf, C. W. M. Bastiaansen, and D. J. Broer, “Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography,” Adv. Mater. 21(17), 1751–1755 (2009).
[CrossRef]

Adv. OptoElectron.

Y. J. Liu and X. W. Sun, “Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications,” Adv. OptoElectron. 2008, 684349 (2008) and references therein.

Instrum. Exp. Tech.

S. A. Gonchukov, Y. B. Lazarev, and A. A. Podkolzin, “Laser Refractometry of Biological Fluids,” Instrum. Exp. Tech. 43(6), 826–828 (2000).
[CrossRef]

Nat. Mater.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94(6), 063903 (2005).
[CrossRef] [PubMed]

Other

R. L. Sutherland, D. M. Brandelik, and C. K. Shepherd, “Device and Method for Detection and Identification of Biological Agents,” United States Patent No. 7,186,567 (2007).

D. Malacara, Geometrical and Instrumental Optics, (Methods in Exp. Phys., Academic Press, 1988) Vol. 25.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, (Elsevier Science Pub Co., 1987).

M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

Grating solver development company. www.gsolver.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the device. A hollow prism contains tiny volumes of test materials and a diffraction grating is put in optical contact with one of its surfaces. Light is normally incident on the external surface of the prism and propagates without refraction throughout materials. The angle of incidence on the grating surface (α) and that of diffraction (β) are related to the refractive index nmat of the test material.

Fig. 2
Fig. 2

behavior of the diffracted angle made by the minus first order respect the grating normal versus the refractive index of the test material in the interval 1.00< nmat <2.00.

Fig. 3
Fig. 3

Contour plot of the diffraction efficiency of the grating plotted as a function of the prism angle α and the grating depth d.

Fig. 4
Fig. 4

(a) Optical setup for device characterization; M, mirror; P1, P2 polarizers; S, sample; 0T, zero transmitted order; -1T, first transmitted order; α, incidence angle; β, diffracted angle. (b) Detail of the PMMA hollow prism used as a container for the test material. (c) SEM picture of the diffraction grating.

Tables (1)

Tables Icon

Table 1 Measurements of the refractive index of several materials compared with corresponding values obtained with other techniques and found in literature

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sin α = n m a t n P M M A sin γ
sin β = m λ Λ + n P M M A sin α = m λ Λ + n m a t sin γ
d β d n m a t = sin γ 1 ( m λ Λ + n m a t sin γ ) 2
Δ β = d β d n m a t Δ n m a t

Metrics