Abstract

Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO2 laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO2 laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica (~1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [CrossRef] [PubMed]
  2. L. Skuja, “The nature of optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
    [CrossRef]
  3. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1444 .
    [PubMed]
  4. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
    [CrossRef]
  5. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [CrossRef]
  6. S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
    [CrossRef]
  7. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [CrossRef]
  8. M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
  9. H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
    [CrossRef]
  10. R. A. House II, J. R. Bettis, and A. H. Guenther, “Efficacy of ion polishing optical surfaces,” Appl. Opt. 16(6), 1486–1488 (1977).
    [CrossRef] [PubMed]
  11. T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).
  12. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).
  13. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-5-3543 .
    [CrossRef] [PubMed]
  14. V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).
  15. C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
    [CrossRef]
  16. R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
    [CrossRef]
  17. P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).
  18. R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).
  19. S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
    [CrossRef]
  20. M. von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications, (Springer-Verlag, Hiedelberg, Germany, 1998).
  21. S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
    [CrossRef]
  22. S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
    [CrossRef]
  23. F. Messina and M. Cannas, “Temperature dependence of the generation and decay of E’ centers induced in silica by 4.7 eV laser radiation,” J. Non-Cryst. Solids 355(18-21), 1038–1041 (2009).
    [CrossRef]
  24. N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
    [CrossRef]
  25. W. W. Mullins, “Flattening of a Nearly Plane Solid Surface Due to Capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
    [CrossRef]
  26. V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).
  27. W. D. Kingery, “Surface Tension of Some Liquid Oxides and Their Temperature Coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
    [CrossRef]
  28. N. Shen, J. D. Bude, T. A. Laurence, W. A. Steele, P. E. Miller, M. D. Feit, L. L. Wong, and T. I. Suratwala, “Isothermal anneal of damage precursors on fused silica surfaces,” submitted.
  29. F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [CrossRef]

2010

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

2009

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

F. Messina and M. Cannas, “Temperature dependence of the generation and decay of E’ centers induced in silica by 4.7 eV laser radiation,” J. Non-Cryst. Solids 355(18-21), 1038–1041 (2009).
[CrossRef]

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17(5), 3543–3554 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-5-3543 .
[CrossRef] [PubMed]

2008

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

2007

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

2006

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

2005

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
[CrossRef]

2004

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

2003

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

2002

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1444 .
[PubMed]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).

2001

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

F. Y. Genin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
[CrossRef]

2000

C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
[CrossRef]

1999

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

1998

L. Skuja, “The nature of optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

1997

V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).

1991

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

1977

1959

W. D. Kingery, “Surface Tension of Some Liquid Oxides and Their Temperature Coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[CrossRef]

W. W. Mullins, “Flattening of a Nearly Plane Solid Surface Due to Capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
[CrossRef]

Ambard, C.

Bark-Zollmann, S.

C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
[CrossRef]

Barritault, P.

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

Bercegol, H.

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

Bettis, J. R.

Bin, F.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Bisson, S. E.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Bouchut, P. R.

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

Britten, J. A.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).

Bude, J. D.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Burke, M. W.

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Butler, J. A.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).

Cannas, M.

F. Messina and M. Cannas, “Temperature dependence of the generation and decay of E’ centers induced in silica by 4.7 eV laser radiation,” J. Non-Cryst. Solids 355(18-21), 1038–1041 (2009).
[CrossRef]

Carr, C. W.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Chase, L. L.

Chaton, P.

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

Cooke, D.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

Cooke, D. J.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

Cormont, P.

Cross, D. A.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

DeMange, P. P.

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Demos, S. G.

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1444 .
[PubMed]

Destribats, J.

Donohue, E. E.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Draggoo, V. G.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Elhadj, S.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Fair, J. E.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

Fang, W.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Feit, M. D.

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Feng, J.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Florry, J. S.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Fujimoto, J.

Fu-Quan, L.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Genin, F. Y.

Grebner, D.

C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
[CrossRef]

Greulich, K. O.

V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).

Guenther, A. H.

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

House II, R. A.

Hrubesh, L. W.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).

Hrubresh, L. W.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Huang, J.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Jiang, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Kamimura, T.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Kingery, W. D.

W. D. Kingery, “Surface Tension of Some Liquid Oxides and Their Temperature Coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[CrossRef]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Kojima, T.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Kozlowski, M. R.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

Laurence, T. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Legros, P.

Liao, Z. M.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

Lieber, C. A.

S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
[CrossRef]

Lin, B.

S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
[CrossRef]

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Lv, H.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Matthews, M. J.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Messina, F.

F. Messina and M. Cannas, “Temperature dependence of the generation and decay of E’ centers induced in silica by 4.7 eV laser radiation,” J. Non-Cryst. Solids 355(18-21), 1038–1041 (2009).
[CrossRef]

Milam, D.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Miller, P. E.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Minoshima, K.

Molander, W. A.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Mori, Y.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Muhlig, C.

C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
[CrossRef]

Mullins, W. W.

W. W. Mullins, “Flattening of a Nearly Plane Solid Surface Due to Capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
[CrossRef]

Nakai, K.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Nakatsuka, M.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Neauport, J.

Neeb, K. P.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Negres, R. A.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Nguyen, H. T.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

Norton, M. A.

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Okada, Y.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).

Pistor, T. V.

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Ramsamooj, R.

S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
[CrossRef]

Ravel, G.

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Salleo, A.

Sasaki, T.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Sell, W. D.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Shen, N.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Skuja, L.

L. Skuja, “The nature of optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

Staggs, M.

Steele, W. A.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Stolken, J. S.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

Suratwala, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Sutton, S. B.

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

Tanaka, M.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Taylor, D.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Thomas, S.

V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).

Triebel, W.

C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
[CrossRef]

Uhl, V.

V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).

Vignes, R. M.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

Wang, H.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Wan-Guo, Z.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Wan-Qing, H.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Wegner, P.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Wei, H.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

Wu, Z. L.

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Xiao-Feng, W.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Xiao-Min, Z.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Xu, S.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Yang, S. T.

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

Yong, X.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

Yoshida, H.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Yoshida, K.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Yoshimura, M.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Yuan, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Zandian, V.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Zheng, W.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Zu, X.

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

Adv. Mater.

V. Uhl, K. O. Greulich, and S. Thomas, ““Comparison of the influence of the fictive and the annealing temperature on the UV-transmission properties of synthetic fused silica,” Appl. Phys,” Adv. Mater. 65, 457–462 (1997).

Appl. Opt.

Appl. Phys. Lett.

R. A. Negres, M. W. Burke, P. P. DeMange, S. B. Sutton, M. D. Feit, and S. G. Demos, “Evaluation of UV absorption coefficient in laser-modified fused silica,” Appl. Phys. Lett. 90(6), 061115 (2007).
[CrossRef]

S. Elhadj, M. J. Matthews, S. T. Yang, D. J. Cooke, J. S. Stolken, R. M. Vignes, V. G. Draggoo, and S. E. Bisson, “Determination of the intrinsic temperature dependent thermal conductivity from analysis of surface temperature of laser irradiated materials,” Appl. Phys. Lett. 96(7), 071110 (2010).
[CrossRef]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett. 82(19), 3230–3232 (2003).
[CrossRef]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[CrossRef]

Appl. Surf. Sci.

N. Shen, M. J. Matthews, J. E. Fair, J. A. Britten, H. T. Nguyen, D. Cooke, S. Elhadj, and S. T. Yang, “Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica,” Appl. Surf. Sci. 256(12), 4031–4037 (2010).
[CrossRef]

Br. Ceram., Trans. J.

V. Zandian, J. S. Florry, and D. Taylor, “Viscosity of Fused-Silica with Different Hydroxyl Contents,” Br. Ceram., Trans. J. 90, 59–60 (1991).

Chin. Phys. Lett.

H. Wan-Qing, H. Wei, W. Fang, X. Yong, L. Fu-Quan, F. Bin, J. Feng, W. Xiao-Feng, Z. Wan-Guo, and Z. Xiao-Min, “Laser-induced damage growth on larger-aperture fused silica optical components at 351 nm,” Chin. Phys. Lett. 26(1), 017901 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. G. Demos, C. A. Lieber, B. Lin, and R. Ramsamooj, “Imaging of tissue microstructure using a multimodal microscope design,” IEEE J. Sel. Top. Quantum Electron. 11(4), 752–758 (2005).
[CrossRef]

J. Am. Ceram. Soc.

W. D. Kingery, “Surface Tension of Some Liquid Oxides and Their Temperature Coefficients,” J. Am. Ceram. Soc. 42(1), 6–10 (1959).
[CrossRef]

J. Appl. Phys.

W. W. Mullins, “Flattening of a Nearly Plane Solid Surface Due to Capillarity,” J. Appl. Phys. 30(1), 77–83 (1959).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, V. G. Draggoo, and S. E. Bisson, “Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis,” J. Appl. Phys. 106(10), 103106 (2009).
[CrossRef]

J. Non-Cryst. Solids

F. Messina and M. Cannas, “Temperature dependence of the generation and decay of E’ centers induced in silica by 4.7 eV laser radiation,” J. Non-Cryst. Solids 355(18-21), 1038–1041 (2009).
[CrossRef]

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[CrossRef]

L. Skuja, “The nature of optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1-3), 16–48 (1998).
[CrossRef]

J. Opt. Soc. Am. A

Nucl. Instrum. Methods Phys. Res. B

S. Xu, X. Zu, X. Jiang, X. Yuan, J. Huang, H. Wang, H. Lv, and W. Zheng, “The damage mechanisms of fused silica irradiated by 355 nm laser in vacuum,” Nucl. Instrum. Methods Phys. Res. B 266(12-13), 2936–2940 (2008).
[CrossRef]

C. Muhlig, W. Triebel, S. Bark-Zollmann, and D. Grebner, “In situ diagnostics of pulse laser-induced defects in DUV transparent fused silica glasses,” Nucl. Instrum. Methods Phys. Res. B 166-167, 698–703 (2000).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Proc. SPIE

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2-laser treatment for mitigation of 351-nm damage growth in fused silica,” Proc. SPIE 4679, 40–47 (2002).

P. Barritault, P. R. Bouchut, H. Bercegol, P. Chaton, and G. Ravel, “Fluorescence of mitigated laser damage in fused silica,” Proc. SPIE 5647, 188–196 (2005).

R. A. Negres, M. A. Norton, Z. M. Liao, D. A. Cross, J. D. Bude, and C. W. Carr, “The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces,” Proc. SPIE 7504, 750412 (2009).

M. A. Norton, L. W. Hrubresh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).

Rev. Laser Eng.

T. Kamimura, K. Nakai, M. Yoshimura, Y. Mori, T. Sasaki, M. Tanaka, Y. Okada, H. Yoshida, M. Nakatsuka, T. Kojima, and K. Yoshida, “High damage resistivity of optical surface for UV lasers by ion beam etching,” Rev. Laser Eng. 27, 623–627 (1999).

Other

N. Shen, J. D. Bude, T. A. Laurence, W. A. Steele, P. E. Miller, M. D. Feit, L. L. Wong, and T. I. Suratwala, “Isothermal anneal of damage precursors on fused silica surfaces,” submitted.

M. von Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications, (Springer-Verlag, Hiedelberg, Germany, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics