Abstract

A novel technique is introduced for jitter-insensitive sub-KHz resolution linewidth characterization technique in ultra-narrow lasers for optical communication applications. The technique is based on self-heterodyne detection induced by Stimulated Brillouin Scattering (SBS). Non linear SBS drives the heterodyne mixing through optical frequency locking of a narrow tunable laser source and the signal under test, which is modulated in the low frequency range. Due to SBS nature, jitter variations in the optical frequency do not affect the correlation spectra measured with resolution figures up to 300 Hz, without the need for optical delay line as in conventional homodyne correlation techniques.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  2. J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Express 17(8), 6753–6758 (2009).
    [CrossRef] [PubMed]
  3. D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).
  4. Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission system,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
    [CrossRef]
  5. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express 16(2), 866–872 (2008).
    [CrossRef] [PubMed]
  6. A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express 16(2), 860–865 (2008).
    [CrossRef] [PubMed]
  7. V. Ferrero and S. Camatel, “Optical Phase locking techniques: an overview and a novel method based on single side sub-carrier modulation,” Opt. Express 16(2), 818–828 (2008).
    [CrossRef] [PubMed]
  8. R. Hui and M. O'Sullivan, Fiber Optic Measurement Techniques (Academic Press, 2009), Chap. 2.
  9. H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
    [CrossRef]
  10. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express 14(9), 3923–3928 (2006).
    [CrossRef] [PubMed]
  11. J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998).
    [CrossRef]
  12. B. Szafraniec and D. M. Baney, “Swept Coherent Spectrum Analysis of the Complex Optical Field”, in 1st IEEE Conference on Lightwave Technologies in Instrumentation and Measurement, IEEE ed. (Palisades, NY, Oct. 2004) pp. 68–72.
  13. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
    [CrossRef]
  14. http://www.aragonphotonics.com/index.php
  15. F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010).
    [CrossRef] [PubMed]
  16. A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 18(4), 556–567 (2001).
    [CrossRef]
  17. P. C. Wait and T. P. Newson, “Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin linewidth,” Opt. Commun. 117(1-2), 142–146 (1995).
    [CrossRef]

2010 (1)

2009 (2)

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Express 17(8), 6753–6758 (2009).
[CrossRef] [PubMed]

D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).

2008 (4)

2006 (1)

2005 (1)

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

2001 (1)

1998 (2)

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[CrossRef]

J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998).
[CrossRef]

1995 (1)

P. C. Wait and T. P. Newson, “Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin linewidth,” Opt. Commun. 117(1-2), 142–146 (1995).
[CrossRef]

1981 (1)

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission system,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

Adamczyk, O.

Bacquet, D.

Barros, D. J.

Boittin, R.

Camatel, S.

Debeau, J.

Debut, A.

Domingo, J. M. S.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Ferrero, V.

Guyomarc’h, D.

D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).

Hagel, G.

D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).

Heras, C.

Heras, C. D.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Herath, V.

Hoffmann, S.

Horak, P.

Ip, E.

Kahn, J. M.

Kaivola, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[CrossRef]

Kimura, T.

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission system,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

Knoop, M.

D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).

Kowalski, B.

Lau, A. P.

Loh, W. H.

Lowery, A. J.

Ludvigsen, H.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[CrossRef]

Mihélic, F.

Newson, T. P.

P. C. Wait and T. P. Newson, “Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin linewidth,” Opt. Commun. 117(1-2), 142–146 (1995).
[CrossRef]

Noé, R.

Pelayo, J.

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Express 17(8), 6753–6758 (2009).
[CrossRef] [PubMed]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Pellejer, E.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Peveling, R.

Pfau, T.

Porrmann, M.

Randoux, S.

Subías, J.

Szriftgiser, P.

Tossavainen, M.

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[CrossRef]

Villuendas, F.

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Express 17(8), 6753–6758 (2009).
[CrossRef] [PubMed]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

Wait, P. C.

P. C. Wait and T. P. Newson, “Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin linewidth,” Opt. Commun. 117(1-2), 142–146 (1995).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission system,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

Zemmouri, J.

Zumsteg, C.

D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).

IEEE J. Quantum Electron. (1)

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission system,” IEEE J. Quantum Electron. 17(6), 919–935 (1981).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very High Resolution Optical Spectrometry by Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(4), 855–857 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

P. C. Wait and T. P. Newson, “Measurement of Brillouin scattering coherence length as a function of pump power to determine Brillouin linewidth,” Opt. Commun. 117(1-2), 142–146 (1995).
[CrossRef]

H. Ludvigsen, M. Tossavainen, and M. Kaivola, “Laser linewidth measurements using self-homodyne detection with short delay,” Opt. Commun. 155(1-3), 180–186 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Guyomarc’h, G. Hagel, C. Zumsteg, and M. Knoop, “Some aspects of simulation and realization of an optical reference cavity,” Phys. Rev. A 80, 063820 (2009).

Other (3)

http://www.aragonphotonics.com/index.php

B. Szafraniec and D. M. Baney, “Swept Coherent Spectrum Analysis of the Complex Optical Field”, in 1st IEEE Conference on Lightwave Technologies in Instrumentation and Measurement, IEEE ed. (Palisades, NY, Oct. 2004) pp. 68–72.

R. Hui and M. O'Sullivan, Fiber Optic Measurement Techniques (Academic Press, 2009), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral description of the Brillouin Induced Self-Heterodyne technique.

Fig. 2
Fig. 2

Schematic of the setup necessary to perform the laser characterization. Laser Source (LS) for Signal Under Test (SUT) and tunable laser source (TLS) for the pump must be stable and narrow.

Fig. 3
Fig. 3

Spectrum of LS1 taken by heterodyning with a laser of the same model as local oscillator. Measure was taken in a 4ms swept time and averaged over 10 measures. Spectrum is centered at the beat frequency between probe and signal.

Fig. 4
Fig. 4

Heterodyning Spectrum of the LS1 laser measured by the non-linear mixing technique, 10 kHz span centered in the modulation frequency. Resolution bandwidth was set to 10Hz, swept time to 2.5s and values averaged over 20 measures. Electric modulation spectrum is plotted in grey color.

Fig. 5
Fig. 5

Heterodyning Spectrum of the LS2 laser measured by the non-linear mixing showed in a 10 kHz span centered in the modulation frequency. Resolution bandwidth was set to 10Hz, swept time to 2.5s and values averaged over 20 measures.

Metrics