Abstract

In this article we present an optical biosensor for label-free detection of trace levels of protease activity. The scheme is based on surface functionalized porous silicon optical structures which supports optical Bloch surface modes. The optical structure provides a resonant optical mode for high sensitivity detection and open access of the sensing layer to the target enzyme. Protease detection is based on the digestion of gelatin, covalently attached inside the pore space, resulting in a spectral blue-shift of the optical mode. Monitoring of spatially separated resonant optical modes is used to eliminate optical response from nonspecific adsorption.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [CrossRef] [PubMed]
  2. S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
    [CrossRef]
  3. P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
    [CrossRef]
  4. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
    [CrossRef]
  5. J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
    [CrossRef]
  6. K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009).
    [CrossRef]
  7. W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
    [CrossRef]
  8. H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
    [CrossRef] [PubMed]
  9. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
    [CrossRef]
  10. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
    [CrossRef] [PubMed]
  11. M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
    [CrossRef] [PubMed]
  12. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
    [CrossRef]
  13. E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006).
    [CrossRef]
  14. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
    [CrossRef]
  15. K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
    [CrossRef] [PubMed]
  16. A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
    [CrossRef]
  17. T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
    [CrossRef]
  18. T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
    [CrossRef]
  19. K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
    [CrossRef] [PubMed]
  20. E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
    [CrossRef]

2010 (1)

2009 (2)

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009).
[CrossRef]

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

2008 (2)

A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
[CrossRef]

T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
[CrossRef]

2007 (5)

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[CrossRef] [PubMed]

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

2006 (4)

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006).
[CrossRef]

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

2004 (1)

W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
[CrossRef]

2002 (1)

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[CrossRef]

2000 (1)

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[CrossRef]

1999 (1)

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

1997 (1)

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Allen, M. J.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Alvarez, S. D.

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

Astrova, E. V.

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[CrossRef]

Barrow, K. D.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Benyattou, T.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006).
[CrossRef]

Bhatia, S. N.

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

Böcking, T.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009).
[CrossRef]

T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
[CrossRef]

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Brown, C. L.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Buriak, J. M.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Canham, L. T.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Cartland, S.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

Chilcott, T. C.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Choi, H. C.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Coster, H. G. L.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Dancil, K.-P. S.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Delouise, L. A.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[CrossRef] [PubMed]

Derfus, A. M.

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

Descrovi, E.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Di Girolamo, N.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

Dominici, L.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Fauchet, P. M.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[CrossRef] [PubMed]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Frascella, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Gal, M.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
[CrossRef]

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[CrossRef]

Gaus, K.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
[CrossRef]

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

Geders, T. W.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Geobaldo, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Ghadiri, M. R.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Giorgis, F.

Gooding, J.

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

Gooding, J. J.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009).
[CrossRef]

T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
[CrossRef]

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

Guillermain, E.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006).
[CrossRef]

Ilyas, S.

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

James, M.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Karger, J.

A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
[CrossRef]

Khokhlov, A. G.

A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
[CrossRef]

Kilian, K.

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

Kilian, K. A.

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009).
[CrossRef]

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
[CrossRef]

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

Lai, L. M. H.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

Lerondel, G.

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[CrossRef]

Lin, V. S. Y.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Lysenko, V.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006).
[CrossRef]

Magenau, A.

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

Michelotti, F.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch Surface Waves based sensors,” Opt. Express 18(8), 8087–8093 (2010).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Miller, B. L.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[CrossRef] [PubMed]

Motesharei, K.

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Orobtchouk, R.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

Ouyang, H.

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[CrossRef] [PubMed]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Perriat, P.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

Pillonnet, A.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

Raftery, D.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Reece, P.

W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
[CrossRef]

Reece, P. J.

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[CrossRef]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

Roux, S.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

Sailor, M. J.

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Schwartz, M. P.

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

Sciacca, B.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

Smith, J.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Stepovich, M. A.

A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
[CrossRef]

Stewart, M. P.

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

Striemer, C. C.

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

Summonte, C.

Sun, B. Q.

W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
[CrossRef]

Tolmachev, V. A.

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[CrossRef]

Valiullin, R. R.

A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
[CrossRef]

Watson, J. A.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Wong, E. L. S.

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Zheng, W. H.

W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
[CrossRef]

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[CrossRef]

ACS Nano (1)

K. A. Kilian, T. Böcking, K. Gaus, M. Gal, and J. J. Gooding, “Peptide-modified optical filters for detecting protease activity,” ACS Nano 1(4), 355–361 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

T. Böcking, K. A. Kilian, K. Gaus, and J. J. Gooding, “Modifying Porous Silicon with Self-Assembled Monolayers for Biomedical Applications: The Influence of Surface Coverage on Stability and Biomolecule Coupling,” Adv. Funct. Mater. 18(23), 3827–3833 (2008).
[CrossRef]

Anal. Chem. (1)

H. Ouyang, L. A. Delouise, B. L. Miller, and P. M. Fauchet, “Label-free quantitative detection of protein using macroporous silicon photonic bandgap biosensors,” Anal. Chem. 79(4), 1502–1506 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

W. H. Zheng, P. Reece, B. Q. Sun, and M. Gal, “Broadband laser mirrors made from porous silicon,” Appl. Phys. Lett. 84(18), 3519 (2004).
[CrossRef]

P. J. Reece, G. Lerondel, W. H. Zheng, and M. Gal, “Optical microcavities with subnanometer linewidths based on porous silicon,” Appl. Phys. Lett. 81(26), 4895–4897 (2002).
[CrossRef]

H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006).
[CrossRef]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90(24), 241116 (2007).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91(24), 241109 (2007).
[CrossRef]

Chem. Commun. (Camb.) (1)

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6), 630–640 (2009).
[CrossRef]

Colloid J. (1)

A. G. Khokhlov, R. R. Valiullin, M. A. Stepovich, and J. Karger, “Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods,” Colloid J. 70(4), 507–514 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

J. M. Buriak, M. P. Stewart, T. W. Geders, M. J. Allen, H. C. Choi, J. Smith, D. Raftery, and L. T. Canham, “Lewis acid mediated hydrosilylation on porous silicon surfaces,” J. Am. Chem. Soc. 121(49), 11491–11502 (1999).
[CrossRef]

J. Lumin. (1)

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121(2), 319–321 (2006).
[CrossRef]

Langmuir (1)

M. P. Schwartz, A. M. Derfus, S. D. Alvarez, S. N. Bhatia, and M. J. Sailor, “The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells,” Langmuir 22(16), 7084–7090 (2006).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

E. V. Astrova and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films,” Mater. Sci. Eng. B 69–70, 142–148 (2000).
[CrossRef]

Nano Lett. (1)

K. A. Kilian, L. M. H. Lai, A. Magenau, S. Cartland, T. Böcking, N. Di Girolamo, M. Gal, K. Gaus, and J. J. Gooding, “Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals,” Nano Lett. 9(5), 2021–2025 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

S. Ilyas, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29(6), 619–622 (2007).
[CrossRef]

Science (1)

V. S. Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B Chem. 105(2), 360–364 (2005).
[CrossRef]

Thin Solid Films (1)

T. Böcking, E. L. S. Wong, M. James, J. A. Watson, C. L. Brown, T. C. Chilcott, K. D. Barrow, and H. G. L. Coster, “Immobilization of dendrimers on Si-C linked carboxylic acid-terminated monolayers on silicon(111),” Thin Solid Films 515(4), 1857–1863 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Diagram of the Kretschmann-type prism coupling optical arrangement used for measuring the reflectivity of the surface wave sensor. The incident white light was polarized in the TE orientation and focused onto the prism using a 10 cm focal length lens. The reflected light is collected by a second lens and coupled to a spectrometer. b) Detailed diagram of the porous silicon film mounted on the surface of the prism using a cover glass as a substrate and refractive index matching liquid. During the sensing experiments the biological suspension is applied to the top surface and permeates through the porous film. After a fixed time the solution is removed from the film and allowed to dry.

Fig. 2
Fig. 2

(a) Experimentally measured (solid) and simulated (dotted) reflectivity spectrum for a freshly etched porous silicon optical Bloch surface wave sensor. Important features include the surface wave mode (631 nm), and the two band-edge modes (489 – 807 nm). (b) refractive index profile of the surface wave structure at the surface wave mode coupling wavelength. The distance is measured relative to the interface between the prism and the multilayered film. (c)-(d) Field intensity profiles for wavelengths corresponding to the band-edge modes (c) and the surface wave mode (d).

Fig. 3
Fig. 3

(a) Experimentally measured reflectivity spectra of surface functionalized porous silicon optical surface wave sensor before and after exposure to 0.01mg/mL of enzyme in biological buffer. (b) Reflectivity spectra after the structure in (a) has been rinsed in deionized water. (c) Graph showing the evolution of the blue shift in the Bloch surface mode (relative to the band-edge mode) when exposed to a solution containing 0.007 mg/mL of Subtilisin. The graph also shows the response of the sensor to a blank test for biological buffer.

Fig. 4
Fig. 4

The predicted spectral response of the optical Bloch surface mode and Band-edge mode to changes in the relative fraction of gelatin filling the pore space in the of the porous silicon layers: (a) changes occurring only in the top layer, and (b), changes occurring uniformly through the entire structure. The corresponding change in refractive index is displayed on the top axis. The band edge mode has a weak dependence on changes to the top layer and this may be used to discriminate between optical shift arising from specific and non-specific adsorption.

Metrics