Abstract

The coupling of a microsphere resonator to a tapered fiber was demonstrated at cryogenic temperatures (8 - 13 K) and investigated with a probe laser light whose frequency around the zero phonon line of nitrogen vacancy centers in diamond (638 nm). For this purpose, a liquid-helium-flow cryostat with a large sample chamber is developed and a resonance dip with a Q of 2 × 106 is observed. The resonance frequency and the coupling condition are found to be stable for a period of one hour.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  2. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [CrossRef] [PubMed]
  3. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25(4), 260–262 (2000).
    [CrossRef]
  4. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
    [CrossRef]
  5. L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
    [CrossRef] [PubMed]
  6. J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
    [CrossRef]
  7. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
    [CrossRef]
  8. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
    [CrossRef]
  9. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
    [CrossRef]
  10. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
    [CrossRef]
  11. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  12. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
    [CrossRef] [PubMed]
  13. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
    [CrossRef]
  14. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
    [CrossRef]
  15. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
    [CrossRef]
  16. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
    [CrossRef]
  17. O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
    [CrossRef]
  18. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
    [CrossRef]

2009

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

2008

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

2007

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[CrossRef]

2006

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[CrossRef]

2005

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

2004

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

2003

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

2000

1998

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

1997

1996

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Antetsberger, G.

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

Arcizet, O.

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

Birks, T. A.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

Brongersma, M. L.

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

Cai, M.

Cheung, G.

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

Cook, A. K.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Fujiwara, H.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

Gorodetsky, M. L.

Hare, J.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Haroche, S.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

Ilchenko, V. S.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[CrossRef] [PubMed]

Jacques, F.

Kalkman, J.

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

Kippenberg, T. J.

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Knight, J. C.

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[CrossRef]

Lefevre-Seguin, V.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[CrossRef]

Park, Y.-S.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Polman, A.

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

Raimond, J.-M.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Riviere, R.

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Roch, J.-F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Sasaki, K.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

Savchenkov, A. A.

Schliesser, A.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

Sercel, P. C.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[CrossRef]

Takahashi, M.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

Takashima, H.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

Takeuchi, S.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

Treussart, F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Vahala, K.

Vahala, K. J.

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

L. Yang and K. J. Vahala, “Gain functionalization of silica microresonators,” Opt. Lett. 28(8), 592–594 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

Wang, H.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Yang, L.

Appl. Phys. Lett.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett. 92(7), 071115 (2008).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057 (2002).
[CrossRef]

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86(26), 261106 (2005).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[CrossRef]

Eur. Phys. J. D

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant Frequency Control of a Microspherical Cavity by Temperature Adjustment,” Jpn. J. Appl. Phys. 43(No. 9A), 6138–6141 (2004).
[CrossRef]

Nano Lett.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Nat. Phys.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[CrossRef]

Nature

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B

J. Kalkman, A. Polman, T. J. Kippenberg, K. J. Vahala, and M. L. Brongersma, “Erbium-implanted silica microsphere laser,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 182–185 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. A

O. Arcizet, R. Riviere, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A 80(2), 021803 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Cutaway diagram of the cryostat system. It has a top view port and two side view ports (not shown). (b) A photograph inside the sample chamber.

Fig. 2
Fig. 2

Variation in the transmittance spectrum with the separation between the microsphere and the tapered fibers at 1562 nm and 10 K.

Fig. 3
Fig. 3

(a) Transmittance spectrum at 638 nm and 8 K. The inset is a microscope image of the fiber coupled microsphere at 8 K. (b) Dependence of the spectrum on the temperature in the range from 11.5 to 13.0 K.

Metrics