Abstract

Laser speckle imaging (LSI) is able to provide full-field perfusion maps of the renal cortex and allows quantification of the average LSI perfusion within an arbitrarily set region of interest and the recovery of LSI perfusion histograms within this region. The aim of the present study was to evaluate the use of LSI for mapping renal cortical microvascular perfusion and to demonstrate the capability of LSI to assess renal perfusion heterogeneities. The main findings were that: 1) full-field LSI measurements of renal microvascular perfusion were highly correlated to single-point LDV measurements; 2) LSI is able to detect differences in reperfusion dynamics following different durations of ischemia; and 3) renal microvascular perfusion heterogeneities can be quantitatively assessed by recovering LSI perfusion histograms.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005).
    [PubMed]
  2. A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
    [CrossRef] [PubMed]
  3. S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
    [CrossRef] [PubMed]
  4. M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
    [CrossRef] [PubMed]
  5. M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
    [CrossRef] [PubMed]
  6. L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
    [CrossRef] [PubMed]
  7. T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
    [PubMed]
  8. J. V. Bonventre and J. M. Weinberg, “Recent advances in the pathophysiology of ischemic acute renal failure,” J. Am. Soc. Nephrol. 14(8), 2199–2210 (2003).
    [CrossRef] [PubMed]
  9. R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
    [CrossRef] [PubMed]
  10. P. M. O’Connor, “Renal oxygen delivery: matching delivery to metabolic demand,” Clin. Exp. Pharmacol. Physiol. 33(10), 961–967 (2006).
    [CrossRef] [PubMed]
  11. C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006).
    [CrossRef] [PubMed]
  12. J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
    [CrossRef] [PubMed]
  13. A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
    [CrossRef] [PubMed]
  14. J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
    [CrossRef] [PubMed]
  15. J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
    [CrossRef] [PubMed]
  16. R. N. Raman, C. D. Pivetti, D. L. Matthews, C. Troppmann, and S. G. Demos, “A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy,” Opt. Express 17(2), 894–905 (2009).
    [CrossRef] [PubMed]
  17. R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
    [CrossRef] [PubMed]
  18. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R01–R66 (2001).
    [CrossRef]
  19. Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
    [CrossRef]
  20. H. Cheng, Q. Luo, Z. Wang, H. Gong, S. Chen, W. Liang, and S. Zeng, “Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging,” Appl. Opt. 42(28), 5759–5764 (2003).
    [CrossRef] [PubMed]
  21. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  22. B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).
  23. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  24. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
    [CrossRef]
  25. C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
    [CrossRef] [PubMed]
  26. A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
    [CrossRef] [PubMed]
  27. T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009).
    [CrossRef]
  28. T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
    [CrossRef]

2010 (1)

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

2009 (5)

R. N. Raman, C. D. Pivetti, D. L. Matthews, C. Troppmann, and S. G. Demos, “A non-contact method and instrumentation to monitor renal ischemia and reperfusion with optical spectroscopy,” Opt. Express 17(2), 894–905 (2009).
[CrossRef] [PubMed]

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009).
[CrossRef]

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

2008 (2)

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

2007 (1)

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[CrossRef]

2006 (3)

P. M. O’Connor, “Renal oxygen delivery: matching delivery to metabolic demand,” Clin. Exp. Pharmacol. Physiol. 33(10), 961–967 (2006).
[CrossRef] [PubMed]

C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006).
[CrossRef] [PubMed]

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

2005 (3)

S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
[CrossRef] [PubMed]

N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005).
[PubMed]

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
[CrossRef] [PubMed]

2003 (3)

J. V. Bonventre and J. M. Weinberg, “Recent advances in the pathophysiology of ischemic acute renal failure,” J. Am. Soc. Nephrol. 14(8), 2199–2210 (2003).
[CrossRef] [PubMed]

H. Cheng, Q. Luo, Z. Wang, H. Gong, S. Chen, W. Liang, and S. Zeng, “Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging,” Appl. Opt. 42(28), 5759–5764 (2003).
[CrossRef] [PubMed]

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

2002 (3)

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

2001 (2)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R01–R66 (2001).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

2000 (1)

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

1999 (1)

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Almac, E.

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

Bartula, L. L.

S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
[CrossRef] [PubMed]

Bauer, R.

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Bellomo, R.

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

Bezemer, R.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Bonventre, J. V.

J. V. Bonventre and J. M. Weinberg, “Recent advances in the pathophysiology of ischemic acute renal failure,” J. Am. Soc. Nephrol. 14(8), 2199–2210 (2003).
[CrossRef] [PubMed]

Bray, R. C.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R01–R66 (2001).
[CrossRef]

Brock, R. W.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

Brodsky, S. V.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Bruining, H. A.

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Chen, S.

Cheng, H.

Choi, B.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Clancy, N. T.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

Coremans, J. M.

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Dayasundara, S.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[CrossRef]

Demos, S.

J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
[CrossRef] [PubMed]

Demos, S. G.

Derfuss, T.

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Dhanani, N. N.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Dieterich, H. J.

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

Dunn, A. K.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Elster, E. A.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Enfield, J. G.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

Fitzgerald, J. T.

J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
[CrossRef] [PubMed]

Forrester, K. R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

Frank, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

Fuggle, S. V.

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Gage, F. A.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Gokden, N.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

Goligorsky, M. S.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Gong, H.

Gorbach, A.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

Gorbach, A. M.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Gray, D. W.

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Hale, D. A.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

Heger, M.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

Heyman, S. N.

C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006).
[CrossRef] [PubMed]

Holthoff, J. H.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

Hughes, S.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[CrossRef]

Ince, C.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009).
[CrossRef]

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

Jassem, W.

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Johannes, T.

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009).
[CrossRef]

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

Kajiya, F.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Kandil, A.

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Kellum, J. A.

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

Khalilzada, M.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

Kirk, A. D.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

Klijn, E.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

Klingel, K.

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

Krug, A.

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Lameire, N.

N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005).
[PubMed]

Leahy, M. J.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

Legrand, M.

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

Leonard, C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

Liang, W.

Lima, A.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

Lindsay, R.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

Liu, F.

S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
[CrossRef] [PubMed]

Luo, Q.

Matthews, D. L.

Mayeux, P. R.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

McLaren, A. J.

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

McNamara, P.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

Mehta, R. L.

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

Menon, R. S.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[CrossRef]

Messer, K. J.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

Michalopoulou, A.

J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
[CrossRef] [PubMed]

Mik, E. G.

T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009).
[CrossRef]

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

Morris, P. J.

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

Myers, S. I.

S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
[CrossRef] [PubMed]

Naus, D. C.

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

Noiri, E.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

O’Connor, P. M.

P. M. O’Connor, “Renal oxygen delivery: matching delivery to metabolic demand,” Clin. Exp. Pharmacol. Physiol. 33(10), 961–967 (2006).
[CrossRef] [PubMed]

O’Doherty, J.

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

Palevsky,, P.

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

Payen, D.

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

Pierce, J. L.

J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
[CrossRef] [PubMed]

Pinto, P. A.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Pivetti, C. D.

Puppels, G. J.

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Raman, R. N.

Ronco, C.

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

Rosen, S.

C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006).
[CrossRef] [PubMed]

Rosenberger, C.

C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006).
[CrossRef] [PubMed]

Simonton, D.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

Smith, P. D.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Sommer, N.

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Stewart, C.

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

Stewart, C. J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

Swanson, S. J.

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

Tada, T.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Tanaka, H.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Tiwari, M. M.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

Traichel, F.

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Troppmann, C.

Tulip, J.

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

Unertl, K. E.

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

Van Aken, M.

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Van Biesen, W.

N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005).
[PubMed]

van Bommel, J.

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

Van Velthuysen, M. L.

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Vanholder, R.

N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005).
[PubMed]

Walter, B.

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Wang, H.

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

Wang, L.

S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[CrossRef]

H. Cheng, Q. Luo, Z. Wang, H. Gong, S. Chen, W. Liang, and S. Zeng, “Efficient characterization of regional mesenteric blood flow by use of laser speckle imaging,” Appl. Opt. 42(28), 5759–5764 (2003).
[CrossRef] [PubMed]

Weinberg, J. M.

J. V. Bonventre and J. M. Weinberg, “Recent advances in the pathophysiology of ischemic acute renal failure,” J. Am. Soc. Nephrol. 14(8), 2199–2210 (2003).
[CrossRef] [PubMed]

Welsh, K. I.

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Wu, L.

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

Yamamoto, T.

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Zeng, S.

Acta Neurochir. Suppl. (Wien) (1)

B. Walter, R. Bauer, A. Krug, T. Derfuss, F. Traichel, and N. Sommer, “Simultaneous measurement of local cortical blood flow and tissue oxygen saturation by Near infra-red Laser Doppler flowmetry and remission spectroscopy in the pig brain,” Acta Neurochir. Suppl. (Wien) 81, 197–199 (2002).

Am. J. Physiol. Renal Physiol. (3)

M. Legrand, E. Almac, E. G. Mik, T. Johannes, A. Kandil, R. Bezemer, D. Payen, and C. Ince, “L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats,” Am. J. Physiol. Renal Physiol. 296(5), F1109–F1117 (2009).
[CrossRef] [PubMed]

L. Wu, M. M. Tiwari, K. J. Messer, J. H. Holthoff, N. Gokden, R. W. Brock, and P. R. Mayeux, “Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice,” Am. J. Physiol. Renal Physiol. 292(1), F261–F268 (2006).
[CrossRef] [PubMed]

T. Yamamoto, T. Tada, S. V. Brodsky, H. Tanaka, E. Noiri, F. Kajiya, and M. S. Goligorsky, “Intravital videomicroscopy of peritubular capillaries in renal ischemia,” Am. J. Physiol. Renal Physiol. 282(6), F1150–F1155 (2002).
[PubMed]

Am. J. Transplant. (1)

A. Gorbach, D. Simonton, D. A. Hale, S. J. Swanson, and A. D. Kirk, “Objective, real-time, intraoperative assessment of renal perfusion using infrared imaging,” Am. J. Transplant. 3(8), 988–993 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Burns (1)

C. J. Stewart, R. Frank, K. R. Forrester, J. Tulip, R. Lindsay, and R. C. Bray, “A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging,” Burns 31(6), 744–752 (2005).
[CrossRef] [PubMed]

Clin. Exp. Pharmacol. Physiol. (2)

P. M. O’Connor, “Renal oxygen delivery: matching delivery to metabolic demand,” Clin. Exp. Pharmacol. Physiol. 33(10), 961–967 (2006).
[CrossRef] [PubMed]

C. Rosenberger, S. Rosen, and S. N. Heyman, “Renal parenchymal oxygenation and hypoxia adaptation in acute kidney injury,” Clin. Exp. Pharmacol. Physiol. 33(10), 980–988 (2006).
[CrossRef] [PubMed]

Clin. Transplant. (1)

A. J. McLaren, W. Jassem, D. W. Gray, S. V. Fuggle, K. I. Welsh, and P. J. Morris, “Delayed graft function: risk factors and the relative effects of early function and acute rejection on long-term survival in cadaveric renal transplantation,” Clin. Transplant. 13(3), 266–272 (1999).
[CrossRef] [PubMed]

Crit. Care (1)

R. Bellomo, C. Ronco, J. A. Kellum, R. L. Mehta, and P. Palevsky, “Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group,” Crit. Care 8(4), R204–R212 (2004).
[CrossRef] [PubMed]

J. Am. Soc. Nephrol. (1)

J. V. Bonventre and J. M. Weinberg, “Recent advances in the pathophysiology of ischemic acute renal failure,” J. Am. Soc. Nephrol. 14(8), 2199–2210 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. O’Doherty, P. McNamara, N. T. Clancy, J. G. Enfield, and M. J. Leahy, “Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration,” J. Biomed. Opt. 14(3), 034025 (2009).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (2)

Z. Wang, S. Hughes, S. Dayasundara, and R. S. Menon, “Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation,” J. Cereb. Blood Flow Metab. 27(2), 258–269 (2007).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Surg. Res. (2)

A. M. Gorbach, H. Wang, N. N. Dhanani, F. A. Gage, P. A. Pinto, P. D. Smith, A. D. Kirk, and E. A. Elster, “Assessment of critical renal ischemia with real-time infrared imaging,” J. Surg. Res. 149(2), 310–318 (2008).
[CrossRef] [PubMed]

J. T. Fitzgerald, S. Demos, A. Michalopoulou, J. L. Pierce, and C. Troppmann, “Assessment of renal ischemia by optical spectroscopy,” J. Surg. Res. 122(1), 21–28 (2004).
[CrossRef] [PubMed]

J. Vasc. Surg. (1)

S. I. Myers, L. Wang, F. Liu, and L. L. Bartula, “Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis,” J. Vasc. Surg. 42(3), 524–531 (2005).
[CrossRef] [PubMed]

Kidney Int. (1)

J. M. Coremans, M. Van Aken, D. C. Naus, M. L. Van Velthuysen, H. A. Bruining, and G. J. Puppels, “Pretransplantation assessment of renal viability with NADH fluorimetry,” Kidney Int. 57(2), 671–683 (2000).
[CrossRef] [PubMed]

Lancet (1)

N. Lameire, W. Van Biesen, and R. Vanholder, “Acute renal failure,” Lancet 365(9457), 417–430 (2005).
[PubMed]

Med. Biol. Eng. Comput. (1)

K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput. 40(6), 687–697 (2002).
[CrossRef]

Microvasc. Res. (2)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68(2), 143–146 (2004).
[CrossRef] [PubMed]

R. Bezemer, E. Klijn, M. Khalilzada, A. Lima, M. Heger, J. van Bommel, and C. Ince, “Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion,” Microvasc. Res. 79(2), 139–143 (2010).
[CrossRef] [PubMed]

Mol. Med. (1)

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, “Renal hypoxia and dysoxia after reperfusion of the ischemic kidney,” Mol. Med. 14(7-8), 502–516 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Physiol. Meas. (1)

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R01–R66 (2001).
[CrossRef]

Shock (2)

T. Johannes, E. G. Mik, and C. Ince, “Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat,” Shock 31(1), 97–103 (2009).
[CrossRef]

T. Johannes, E. G. Mik, K. Klingel, H. J. Dieterich, K. E. Unertl, and C. Ince, “Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia,” Shock 31(5), 521–528 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A: Mean arterial pressure (MAP) and renal blood flow (RBF) during the 1 min ischemia/reperfusion (I/R) experiments. B: Laser speckle imaging (LSI) and laser Doppler velocimetry (LDV) measurements during the 1 min I/R experiments. C: Correlation and linear regression analysis of the LSI and LDV measurements during the 1 min I/R experiments. D: LSI perfusion during the reperfusion phase of the 1, 10, and 45 min I/R experiments. *p<0.05 for 1 min I/R versus 10 min I/R and p<0.05 for 45 min I/R versus 1 min I/R and 10 min I/R.

Fig. 2
Fig. 2

Laser speckle imaging (LSI) perfusion maps before (A) and after (B-D) infusion of air bubble-enriched isotonic saline. The air bubbles first led to complete obstruction of the renal cortical artery (B, 7 s post-infusion) after which the bubbles gradually dissolved (C, 14 s post-infusion) until normal renal cortical perfusion was restored (D, 21 s post-infusion).

Fig. 3
Fig. 3

Laser speckle imaging (LSI) perfusion histograms before (A) and after (B) infusion of air bubble-enriched isotonic saline. The histograms were fitted with a Gaussian fit to determine the mean ± SD of the LSI perfusion histograms. The SD of the Gaussian fit of the LSI perfusion histograms was interpreted as a measure of perfusion heterogeneity.

Metrics