Abstract

Semiconductor plasmonic Fabry-Perot lasers at submicron and nanometer scales exhibit many characteristics distinct from those of their conventional counterparts at micron scale. The differences originate from their small sizes and the presence of plasma metal in the cavity. To design a laser of this type, these features have to be taken into account properly. In this paper, we provide a comprehensive approach to the design and performance evaluation of the plasmonic Fabry-Perot nanolasers. In particular, we show the proper procedure to obtain the key parameters for lasing action, which are usually neglected in the conventional semiconductor Fabry-Perot lasers but become important for nanolasers.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  3. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
    [CrossRef]
  4. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
    [CrossRef]
  5. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
    [CrossRef]
  6. S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1004–1013 (2009).
    [CrossRef]
  7. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003).
    [CrossRef]
  8. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).
  9. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16, 10580–10595 (2008).
    [CrossRef]
  10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  11. A. Kapoor and G. S. Singh, “Mode classification in cylindrical dielectric waveguide,” J. Lightwave Technol. 18, 849 (2000).
    [CrossRef]
  12. C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986).
    [CrossRef]
  13. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
    [CrossRef]
  14. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  15. COMSOL Inc, http://www.comsol.com.
  16. C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009).
    [CrossRef]
  17. S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34, 91–93 (2009).
    [CrossRef]
  18. M. Karl, B. Kettner, S. Burger, F. Schmidt, H. Kalt, and M. Hetterich, “Dependencies of micro-pillar cavity quality factors calculated with finite element methods,” Opt. Express 17, 1144 (2009).
    [CrossRef]
  19. E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
    [CrossRef]
  20. Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
    [CrossRef]

2010

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

2009

2008

2007

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).

2005

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

2000

1997

T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[CrossRef]

1993

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

1992

E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
[CrossRef]

1986

C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bimberg, D.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

Blok, H.

T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[CrossRef]

Burger, S.

Chang, S. W.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34, 91–93 (2009).
[CrossRef]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1004–1013 (2009).
[CrossRef]

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16, 10580–10595 (2008).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chuang, S. L.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

S. W. Chang and S. L. Chuang, “Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media,” Opt. Lett. 34, 91–93 (2009).
[CrossRef]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1004–1013 (2009).
[CrossRef]

S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16, 10580–10595 (2008).
[CrossRef]

C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986).
[CrossRef]

Crawford, F. D.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Dapkus, P.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

de Vries, T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

de Waardt, H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Demeulenaere, B.

T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Eijkemans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Geluk, E. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Germann, T. D.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
[CrossRef]

Grodzinski, P.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Hetterich, M.

Hill, M. T.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Hu, Q.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kalt, H.

Kapoor, A.

Karl, M.

Karouta, F.

Kettner, B.

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Koza, M. A.

E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
[CrossRef]

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Lee, C. S.

C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986).
[CrossRef]

Lee, S. W.

C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986).
[CrossRef]

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Lenstra, D.

T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[CrossRef]

Leong, E. S. P.

Lu, C. Y.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

Marell, M.

Maslov, A. V.

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

Ni, C. Y. A.

Ning, C. Z.

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Nötzel, R.

Oei, Y. S.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Osinski, J. S.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Rideout, W. C.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Schlafer, J.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Schmidt, F.

Sharfin, W. F.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Singh, G. S.

Smalbrugge, B.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Sun, M.

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

van Otten, F. W. M.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Visser, T. D.

T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[CrossRef]

Williams, B. S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
[CrossRef]

Yang, S. H.

C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

Zah, C. E.

E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
[CrossRef]

Zhu, Y.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107 (2009).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Zou, Y.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

Appl. Phys. Lett.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett. 83, 1237 (2003).
[CrossRef]

C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang, “Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature,” Appl. Phys. Lett. 95, 233507 (2009).
[CrossRef]

E. Yablonovitch, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett. 60, 371 (1992).
[CrossRef]

IEEE J. Quantum Electron.

Y. Zou, J. S. Osinski, P. Grodzinski, P. Dapkus, W. C. Rideout, W. F. Sharfin, J. Schlafer, and F. D. Crawford, “Experimental study of Auger recombination, gain, and temperature sensitivity of 1.5 μm compressively strained semiconductor lasers,” IEEE J. Quantum Electron. 29, 1565–1575 (1993).
[CrossRef]

T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997).
[CrossRef]

S. W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1004–1013 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

C. S. Lee, S. W. Lee, and S. L. Chuang, “Normal modes in an overmoded circular waveguide coated with lossy material,” IEEE Trans. Microw. Theory Tech. 34, 773 (1986).
[CrossRef]

J. Appl. Phys.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi B

C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).

Proc. SPIE

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser by using metal coating,” Proc. SPIE 6468, 64680I (2007).

Other

COMSOL Inc, http://www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics