Abstract

We have proposed a novel orthogonal frequency division multiplexing (OFDM) modulated WDM radio over fiber (ROF) system by employing a single photonic crystal fiber (PCF) supercontinuum (SC) multi-wavelength lightwave source. Both wired and wireless applications of ROF access are achieved. In our experiment, we pick out four 40-GHz ROF channels by properly designed fiber Bragg grating (FBG). The 1-Gb/s 16QAM-OFDM downstream signal is demonstrated for both wired and wireless applications over 20-km standard single mode fiber (SMF). A 1-Gb/s OOK upstream signal is also transmitted over 20-km SMF successfully with less than 0.4dB power penalty.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jianjun, C. Gee Kung, J. Zhensheng, Y. Lilin, S. Yikai and W. Ting, “A ROF Downstream Link with Optical mm-Wave Generation Using Optical Phase Modulator for Providing Broadband Optical-Wireless Access Service,” in Proc. OFC, USA, paper OFM3(2006).
  2. Y.-D. Chung, K.-S. Choi, J.-S. Sim, H.-K. Yu, and J. Kim, “A 60-GHz-Band Analog Optical System-on-Package Transmitter for Fiber-Radio Communications,” J. Lightwave Technol. 25(11), 3407–3412 (2007).
    [CrossRef]
  3. M. Attygalle, C. Lim, and A. Nirmalathas, “Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser,” J. Lightwave Technol. 23(1), 295–303 (2005).
    [CrossRef]
  4. Z. Jia, J. Yu, G. Ellinas, and G.-K. Chang, “Key enabling technologies for optical-wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
    [CrossRef]
  5. C.-H. Chang, H.-H. Lu, H.-S. Su, C.-L. Shih, and K.-J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
    [CrossRef] [PubMed]
  6. W.-K. Kim, S.-W. Kwon, W.-J. Jeong, G. S. Son, K. H. Lee, W. Y. Choi, W. S. Yang, H. M. Lee, and H. Y. Lee, “Integrated optical modulator for signal up-conversion over radio-on-fiber link,” Opt. Express 17(4), 2638–2645 (2009).
    [CrossRef] [PubMed]
  7. M. Attygalle, C. Lim, and A. Nirmalathas, “Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser,” J. Lightwave Technol. 23(1), 295–303 (2005).
    [CrossRef]
  8. T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,” IEEE Photon. Technol. Lett. 17(6), 1274–1276 (2005).
    [CrossRef]
  9. A. Okamoto, T. Hori, N. Nishizawa, M. Mori, R. Goto, and T. Goto, “Coherence Characteristics of Super Continuum Generated with Ultrashort Pulse Fiber Laser and Highly Nonlinear Fiber,” in Proc. LEOS, paper CThC3–P8 (2005).
  10. K. P. Hansen and J. R. Jensen, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” in Proc. OFC, paper ThGG8 (2002).
  11. C. T. Lin, Y. M. Lin, J. J. Chen, S. P. Dai, P. T. Shih, P. C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008).
    [CrossRef] [PubMed]
  12. L. Chen, J. G. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27(14), 2786–2791 (2009).
    [CrossRef]
  13. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  14. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008).
    [CrossRef] [PubMed]

2010

2009

2008

2007

2005

Attygalle, M.

Bao, H.

Chang, C.-H.

Chang, G. K.

Chang, G.-K.

Chen, J. J.

Chen, K.-J.

Chen, L.

Chi, S.

Choi, K.-S.

Choi, W. Y.

Chung, Y.-D.

Dai, S. P.

Dong, Z.

Ellinas, G.

Huang, M.

Jeong, W.-J.

Jia, Z.

Kim, J.

Kim, W.-K.

Kitayama, K.-I.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,” IEEE Photon. Technol. Lett. 17(6), 1274–1276 (2005).
[CrossRef]

Kuri, T.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,” IEEE Photon. Technol. Lett. 17(6), 1274–1276 (2005).
[CrossRef]

Kwon, S.-W.

Lee, H. M.

Lee, H. Y.

Lee, K. H.

Lim, C.

Lin, C. T.

Lin, Y. M.

Liu, B.

Lu, H.-H.

Lu, J.

Nakasyotani, T.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,” IEEE Photon. Technol. Lett. 17(6), 1274–1276 (2005).
[CrossRef]

Nirmalathas, A.

Peng, P. C.

Shieh, W.

Shih, C.-L.

Shih, P. T.

Sim, J.-S.

Son, G. S.

Su, H.-S.

Tang, Y.

Toda, H.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,” IEEE Photon. Technol. Lett. 17(6), 1274–1276 (2005).
[CrossRef]

Wen, S.

Xin, X.

Yang, W. S.

Yu, C.

Yu, H.-K.

Yu, J.

Yu, J. G.

Zhang, L.

Zhang, Q.

IEEE Photon. Technol. Lett.

T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, “Characterizations of Supercontinuum Light Source for WDM Millimeter-Wave-Band Radio-on-Fiber Systems,” IEEE Photon. Technol. Lett. 17(6), 1274–1276 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

A. Okamoto, T. Hori, N. Nishizawa, M. Mori, R. Goto, and T. Goto, “Coherence Characteristics of Super Continuum Generated with Ultrashort Pulse Fiber Laser and Highly Nonlinear Fiber,” in Proc. LEOS, paper CThC3–P8 (2005).

K. P. Hansen and J. R. Jensen, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” in Proc. OFC, paper ThGG8 (2002).

Y. Jianjun, C. Gee Kung, J. Zhensheng, Y. Lilin, S. Yikai and W. Ting, “A ROF Downstream Link with Optical mm-Wave Generation Using Optical Phase Modulator for Providing Broadband Optical-Wireless Access Service,” in Proc. OFC, USA, paper OFM3(2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed OFDM modulated WDM-ROF architecture employing a single SC source. (SC: supercontinuum; PCF: photonic crystal fiber; MZM: Mach-Zehnder modulator; IM: intensity modulator).

Fig. 2
Fig. 2

The structure and dispersion curve of the PCF.

Fig. 3
Fig. 3

Experimental setup. (TOF: tunable optical filter; EA: electrical amplifier; LPF: low pass filter; APD: avalanche photodiode; TDS: real time digital sampling scope).

Fig. 4
Fig. 4

The optical spectra and OFDM electrical spectrum. (i) initial SC spectrum; (ii) 4-channel mm-wave; (iii) electrical OFDM spectrum; (a)–(c): the optical spectra at the corresponding points labeled in Fig. 3. (Optical resolution: 0.01nm).

Fig. 5
Fig. 5

Constellation diagrams and measured BER curves of wired and wireless downstream signal.

Fig. 6
Fig. 6

Measured BER curves of upstream signal.

Metrics