Abstract

Nd:YAG ceramics for laser applications were elaborated with various residual porosities by reaction-sintering process. The porosity analysis with CLSM and SEM led to the determination of the pore volume fraction after sintering. This study revealed that the mean pore size of Nd:YAG ceramics was around 0.7 µm while the residual porosity was ranging between 10−1% and 10−4%. These pore contents affect the transparency and laser efficiency of ceramics. The analytical model based on the Mie light scattering fairly fits the experimental data. This demonstrates that the porosity in Nd:YAG ceramics should be lower than 10−4% to reach single-crystal laser efficiency.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
    [CrossRef]
  2. S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
    [CrossRef]
  3. A. Ikesue and Y. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
    [CrossRef]
  4. A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
    [CrossRef]
  5. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [CrossRef]
  6. B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
    [CrossRef]
  7. A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009).
    [CrossRef]
  8. R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
    [CrossRef]
  9. R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
    [CrossRef]
  10. A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
    [CrossRef]
  11. G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
    [CrossRef]
  12. R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).
  13. Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
    [CrossRef]
  14. M. Rahaman, Sintering of Ceramics, ed., (CRC Press, New York, 2008).
  15. I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008).
    [CrossRef]
  16. A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
    [CrossRef]
  17. R. Apetz and M. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
    [CrossRef]
  18. R. Dobbins and G. Jizmagian, “Particle size measurements based on use of mean scattering cross sections,” J. Opt. Soc. Am. B 56(10), 1351–1352 (1966).
    [CrossRef]
  19. R. Dobbins and G. Jizmagian, “Optical scattering cross sections for polydispersions of dielectric spheres,” J. Opt. Soc. Am. B 56(10), 1345–1349 (1966).
    [CrossRef]

2009 (4)

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

2008 (2)

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008).
[CrossRef]

2006 (2)

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

A. Ikesue and Y. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

2004 (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

2003 (2)

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

R. Apetz and M. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

2000 (1)

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

1997 (1)

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

1995 (2)

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

1966 (2)

R. Dobbins and G. Jizmagian, “Particle size measurements based on use of mean scattering cross sections,” J. Opt. Soc. Am. B 56(10), 1351–1352 (1966).
[CrossRef]

R. Dobbins and G. Jizmagian, “Optical scattering cross sections for polydispersions of dielectric spheres,” J. Opt. Soc. Am. B 56(10), 1345–1349 (1966).
[CrossRef]

Apetz, R.

R. Apetz and M. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

Aung, Y.

A. Ikesue and Y. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

Baumard, J.

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).

Bogicevic, C.

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

Boulesteix, R.

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).

Butashin, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Castillo, V.

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

Dammak, H.

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

Dobbins, R.

R. Dobbins and G. Jizmagian, “Particle size measurements based on use of mean scattering cross sections,” J. Opt. Soc. Am. B 56(10), 1351–1352 (1966).
[CrossRef]

R. Dobbins and G. Jizmagian, “Optical scattering cross sections for polydispersions of dielectric spheres,” J. Opt. Soc. Am. B 56(10), 1345–1349 (1966).
[CrossRef]

Dumm, J. Q.

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

Furusato, I.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[CrossRef]

Hiraga, K.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Hutzler, T.

A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Jizmagian, G.

R. Dobbins and G. Jizmagian, “Optical scattering cross sections for polydispersions of dielectric spheres,” J. Opt. Soc. Am. B 56(10), 1345–1349 (1966).
[CrossRef]

R. Dobbins and G. Jizmagian, “Particle size measurements based on use of mean scattering cross sections,” J. Opt. Soc. Am. B 56(10), 1351–1352 (1966).
[CrossRef]

Kagawa, Y.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Kamata, K.

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Kaminskii, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Karolak, F.

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

Kilo, M.

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

Kim, B.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Klimke, J.

A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009).
[CrossRef]

Kochawattana, S.

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

Konstantinova, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Krell, A.

A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009).
[CrossRef]

Kudryashov, A.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Kumar, G. A.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Lee, S.

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

Lu, J.

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Maître, A.

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).

Messing, G. L.

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

Miyazaki, T.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Morita, K.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Musha, M.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Nagayama, H.

I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008).
[CrossRef]

Orekhova, V.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Prabhu, M.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Quarles, G.

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

Rabinovitch, Y.

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).

Sallé, C.

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

Shirokava, A.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Song, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Takaichi, K.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Tétard, D.

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

Tsukuma, K.

I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008).
[CrossRef]

Ueda, K.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Uematsu, T.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

Van Bruggen, M.

R. Apetz and M. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

Weber, S.

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

Xu, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Yagi, H.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Yamaga, I.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Yamamoto, T.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

Yamashita, I.

I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008).
[CrossRef]

Yanagitani, T.

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Yoshida, H.

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Yoshida, K.

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

Acta Mater. (1)

B. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, and Y. Kagawa, “Microstructure and optical properties of transparent alumina,” Acta Mater. 57(5), 1319–1326 (2009).
[CrossRef]

Crystallogr. Rep. (1)

A. Kaminskii, K. Ueda, A. Konstantinova, H. Yagi, T. Yanagitani, A. Butashin, V. Orekhova, J. Lu, K. Takaichi, T. Uematsu, M. Musha, and A. Shirokava, “Refractive indices of laser nanocrystalline ceramics based on Y3Al5O12,” Crystallogr. Rep. 48(5), 868–871 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Kumar, J. Lu, A. A. Kaminskii, K.-I. Ueda, H. Yagi, T. Yanagitani, and N. V. Unnikrishnan “Spectroscopic and stimulated emission characteristics of Nd3+ in transparent YAG ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

J. Am. Ceram. Soc. (7)

R. Apetz and M. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc. 86(3), 480–486 (2003).
[CrossRef]

S. Lee, S. Kochawattana, G. L. Messing, J. Q. Dumm, G. Quarles, and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics,” J. Am. Ceram. Soc. 89(6), 1945–1950 (2006).
[CrossRef]

A. Ikesue and Y. Aung, “Synthesis and performance of advanced ceramic lasers,” J. Am. Ceram. Soc. 89(6), 1936–1944 (2006).
[CrossRef]

A. Ikesue, I. Furusato, and K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78(1), 225–228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[CrossRef]

A. Ikesue, K. Yoshida, T. Yamamoto, and I. Yamaga, “Optical scattering centers in polycrystalline Nd:YAG laser,” J. Am. Ceram. Soc. 80(6), 1517–1522 (1997).
[CrossRef]

I. Yamashita, H. Nagayama, and K. Tsukuma, “Transmission properties of translucent polycrystalline alumina,” J. Am. Ceram. Soc. 91(8), 2611–2616 (2008).
[CrossRef]

J. Eur. Ceram. Soc. (2)

A. Krell, T. Hutzler, and J. Klimke, “Transmission physics and consequences for materials selection, manufacturing, and applications,” J. Eur. Ceram. Soc. 29(2), 207–221 (2009).
[CrossRef]

R. Boulesteix, A. Maître, J. Baumard, Y. Rabinovitch, C. Sallé, S. Weber, and M. Kilo, “The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms,” J. Eur. Ceram. Soc. 29(12), 2517–2526 (2009).
[CrossRef]

J. Mater. Process. Technol. (1)

Y. Rabinovitch, C. Bogicevic, F. Karolak, D. Tétard, and H. Dammak, “Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics,” J. Mater. Process. Technol. 199(1–3), 314–320 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

R. Dobbins and G. Jizmagian, “Particle size measurements based on use of mean scattering cross sections,” J. Opt. Soc. Am. B 56(10), 1351–1352 (1966).
[CrossRef]

R. Dobbins and G. Jizmagian, “Optical scattering cross sections for polydispersions of dielectric spheres,” J. Opt. Soc. Am. B 56(10), 1345–1349 (1966).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[CrossRef]

Mater. Lett. (1)

R. Boulesteix, A. Maître, J. Baumard, and Y. Rabinovitch, “Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy,” Mater. Lett. (accepted).

Opt. Mater. (1)

R. Boulesteix, A. Maître, J. Baumard, C. Sallé, and Y. Rabinovitch, “Mechanism of the liquid-phase sintering for Nd:YAG ceramics,” Opt. Mater. 31(5), 711–715 (2009).
[CrossRef]

Other (1)

M. Rahaman, Sintering of Ceramics, ed., (CRC Press, New York, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Measurement setup for real in-line transmission as a function of sample thickness x.

Fig. 2
Fig. 2

Visualization of transparent 2 at.% Nd:YAG ceramics sintered under vacuum at 1750°C for different dwell times of 1 h, 2 h, 5 h and 10 h from the left to the right, respectively.

Fig. 3
Fig. 3

Transmission electron (a) and (b) and scanning electron (b) and (c) microscopy observations of dense 2 at.% Nd:YAG ceramics after sintering under vacuum at 1750°C for 2 h.

Fig. 4
Fig. 4

3-dimension CLSM observations (volume of 100 × 100 × 20 µm3) of porosity in 2 at.% Nd:YAG ceramics sintered under vacuum for 1h (a), 2h (b), 5h (c) and 10h (d).

Fig. 5
Fig. 5

Pore size distribution obtained from SEM images analyses for 2 at.% Nd:YAG samples sintered under vacuum for 1h (full bars) or 5h (empty bars). Size distribution function (for specimen sintered 1h) fitted by a log-normal law N(Ф) (full line) according to Eq. (2) with σ = 0.48 µm and Фmax = 0.48 µm.

Fig. 6
Fig. 6

Transmittance as a function of wavelength (400 nm < λ < 1100 nm) for 1.1 at.%-Nd:YAG single-crystal and 2 at.%-Nd:YAG ceramics with a thickness of 1 mm and various residual porosities.

Fig. 7
Fig. 7

Logarithmic plot of real in line transmittance (RIT) values at a wavelength of 633 nm as a function of the thickness of 2 at.% Nd:YAG ceramics with various residual porosities.

Fig. 8
Fig. 8

Output versus input laser energy of 1.1 at.%-Nd:YAG single-crystal and 2 at.% Nd:YAG ceramics with various residual porosities.

Fig. 9
Fig. 9

Experimental values (dots) and theoretical evolution according to Eq. (8) (line) of laser slope efficiency for 2 at.% Nd:YAG ceramics with various residual porosity.

Tables (2)

Tables Icon

Table 1 Microstructural features of transparent Nd:YAG ceramics after different vacuum-sintering treatments at 1750°C.

Tables Icon

Table 2 Optical features of transparent Nd:YAG ceramics after different vacuum-sintering treatments at 1750°C.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P = C n π 6 0 N ( Φ ) Φ 3 d Φ
N ( Φ ) = 1 2 π σ Φ max exp ( 0.5 σ 2 ) exp ( ( ln ( Φ ) ln ( Φ max ) ) 2 2 σ 2 )
Φ moy = Φ max exp ( 1.5 σ 2 )
R I T = I I 0 = ( 1 T ) 2 exp ( α x )
T = ( n 1 ) 2 ( n + 1 ) 2
R l a s e r = T m i r r o r η S η Q T m i r r o r + x α t o t a l
α s a m p l e = 3 2 K Φ m o y P
R l a s e r = 0.5054 0.7 + 0.25 ( 3 2 K Φ m o y P + 1.33 )

Metrics