Abstract

Based on inspiration from multi-mode interference self-imaging and theoretical FDTD simulations, a 1x3 beam splitter was designed, fabricated and characterized. Measurements show that for TE-polarized incident light the power is distributed equally between the output ports within 1dB in the range from 1541nm to 1552nm, and the total transmission of the 1x3 splitter is equal to the corresponding length of a single-line-defect PhCW within the measurement uncertainty.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lifante, “Integrated Photonics: Fundamentals” (John Wiley & Sons Ltd, Chichester, 2005).
    [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the Flow of Light (second edition)” (Princeton University Press, Princeton, 2007), Chap. 8.
    [PubMed]
  3. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and H. Lee, “Photonic crystal power-splitter based on directional coupling,” Opt. Express 12(15), 3599–3604 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3599 .
    [CrossRef] [PubMed]
  4. T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
    [CrossRef]
  5. S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett. 27(12), 1001–1003 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-12-1001 .
    [CrossRef]
  6. S. H. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18(2), 162–165 (2001).
    [CrossRef]
  7. Y. Zhang, Z. J. Li, and B. J. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14, 2679–2689 (2006), ttp:// www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2679 .
  8. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22(12), 2842–2846 (2004).
    [CrossRef]
  9. A. Têtu, M. Kristensen, L. H. Frandsen, A. Harpøth, P. I. Borel, J. S. Jensen, and O. Sigmund, “Broadband topology-optimized photonic crystal components for both TE and TM polarizations,” Opt. Express 13(21), 8606–8611 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-13-21-8606 .
    [CrossRef] [PubMed]
  10. P. I. Borel, L. H. Frandsen, A. Harpoth, M. Kristensen, J. S. Jensen, and O. Sigmund, “Topology optimised broadband photonic crystal Y-splitter,” Electron. Lett. 41(2), 69–71 (2005).
    [CrossRef]
  11. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultralow-loss 3-dB photonic crystal waveguide splitter,” Opt. Lett. 29(14), 1623–1625 (2004).
    [CrossRef] [PubMed]
  12. L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  13. H. J. Kim, I. Park, B. H. O. S. G. Park, H. Lee, and S. G. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12(23), 5625–5633 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-23-5625 .
    [CrossRef] [PubMed]
  14. Z. J. Li, Y. Zhang, and B. J. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-3887 .
    [CrossRef] [PubMed]
  15. H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
    [CrossRef]
  16. T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
    [CrossRef]
  17. O. Bryngdah, “Image formation using self-imaging techniques,” J. Opt. Soc. Am. 63(4), 416–419 (1973).
    [CrossRef]
  18. R. Ulrich, “Image-formation by phase coincidences in optical-waveguides,” Opt. Commun. 13(3), 259–264 (1975).
    [CrossRef]
  19. J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
    [CrossRef]
  20. G. P. Agrawal, “Fiber-Optic Communication Systems” (Wiley-Interscience, Rochester, 1997), Chap. 2.
    [PubMed]
  21. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9444 .
    [CrossRef] [PubMed]

2009 (1)

H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
[CrossRef]

2008 (1)

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

2007 (1)

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

2006 (2)

2005 (2)

2004 (4)

2002 (1)

2001 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1992 (1)

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

1975 (1)

R. Ulrich, “Image-formation by phase coincidences in optical-waveguides,” Opt. Commun. 13(3), 259–264 (1975).
[CrossRef]

1973 (1)

Baets, R.

Beckx, S.

Birbeck, J. C. H.

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Bogaerts, W.

Borel, P. I.

Boscolo, S.

Bryngdah, O.

Chen, H. B.

H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
[CrossRef]

Dumon, P.

Fage-Pedersen, J.

Fallahi, M.

Fan, S. H.

Frandsen, L. H.

Gong, Z.

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

Harpoth, A.

P. I. Borel, L. H. Frandsen, A. Harpoth, M. Kristensen, J. S. Jensen, and O. Sigmund, “Topology optimised broadband photonic crystal Y-splitter,” Electron. Lett. 41(2), 69–71 (2005).
[CrossRef]

Harpøth, A.

Haus, H. A.

He, J. L.

H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
[CrossRef]

Heaton, J. M.

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Hilton, K. P.

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Hong, Z.

H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
[CrossRef]

Jenkins, R. M.

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Jensen, J. S.

Jiang, X. Q.

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kim, H. J.

Krauss, T. F.

Kristensen, M.

Lavrinenko, A. V.

Lee, H.

Lee, H. S.

Lee, S. G.

Li, B. J.

Li, Z. J.

Liao, Q. H.

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

Liu, T.

Manolatou, C.

Mansuripur, M.

Midrio, M.

Moloney, J. V.

Moon, K. M.

O, B. H.

Park, I.

Park, S. G.

Parker, J. T.

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Sigmund, O.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Têtu, A.

Thorhauge, M.

Ulrich, R.

R. Ulrich, “Image-formation by phase coincidences in optical-waveguides,” Opt. Commun. 13(3), 259–264 (1975).
[CrossRef]

Wang, M. H.

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

Wiaux, V.

Wight, D. R.

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Wouters, J.

Xu, Y.

H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
[CrossRef]

Yang, J. Y.

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

Yu, T. B.

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

Zakharian, A. R.

Zhang, Y.

Zhou, H. F.

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

Zhuang, Y. X.

Appl. Phys. Lett. (1)

J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, J. C. H. Birbeck, and K. P. Hilton, “Novel 1-to-N way integrated optical beam-splitters using symmetrical mode mixing in GaAs/AlGaAs multimode wave-guides,” Appl. Phys. Lett. 61(15), 1754–1756 (1992).
[CrossRef]

Electron. Lett. (1)

P. I. Borel, L. H. Frandsen, A. Harpoth, M. Kristensen, J. S. Jensen, and O. Sigmund, “Topology optimised broadband photonic crystal Y-splitter,” Electron. Lett. 41(2), 69–71 (2005).
[CrossRef]

J. Lightwave Technol. (2)

L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging - principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” J. Lightwave Technol. 22(12), 2842–2846 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A, Pure Appl. Opt. 9(1), 37–42 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. B. Yu, H. F. Zhou, Z. Gong, J. Y. Yang, X. Q. Jiang, and M. H. Wang, “Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides,” J. Phys. D Appl. Phys. 41(9), 095101 (2008).
[CrossRef]

Opt. Commun. (2)

R. Ulrich, “Image-formation by phase coincidences in optical-waveguides,” Opt. Commun. 13(3), 259–264 (1975).
[CrossRef]

H. B. Chen, Y. Xu, J. L. He, and Z. Hong, “A polarization splitter based on self-imaging phenomena in an anisotropic photonic crystal with an absolute photonic band gap,” Opt. Commun. 282(17), 3626–3629 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (4)

G. Lifante, “Integrated Photonics: Fundamentals” (John Wiley & Sons Ltd, Chichester, 2005).
[PubMed]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, “Photonic Crystals: Molding the Flow of Light (second edition)” (Princeton University Press, Princeton, 2007), Chap. 8.
[PubMed]

Y. Zhang, Z. J. Li, and B. J. Li, “Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves,” Opt. Express 14, 2679–2689 (2006), ttp:// www.opticsinfobase.org/abstract.cfm?URI=oe-14-7-2679 .

G. P. Agrawal, “Fiber-Optic Communication Systems” (Wiley-Interscience, Rochester, 1997), Chap. 2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic layout of 1x3 beam splitter consisting of input, MMI and output PhCWs. The excitor and sensors for the FDTD simulation are arranged in the ridge waveguides.

Fig. 2
Fig. 2

Dispersion diagram for TE polarization of the PhCWs calculated using 3D PWE method. The supercells are shown in the insets. The black lines are PhC modes, while the red (blue) lines are even (odd) gap-guided modes.

Fig. 3
Fig. 3

The transverse profile of the magnetic field Hy for the even modes at kΛ/2π=0.5, a) input-, b) MMI- and c) output-region.

Fig. 4
Fig. 4

(a) Simulated normalized TE-polarized transmittance by 3D FDTD for the splitter with Ln=11Λ, (b) A snapshot of Hy at 1567.4 nm.

Fig. 5
Fig. 5

(a) SEM micrograph of the splitter with Ln=11Λ, (b) ridge waveguides connected to the splitter, (c) Schematic diagram of the measurement setup.

Fig. 6
Fig. 6

(a) Measured normalized TE-polarized transmittance for the 1x3 splitter with Ln=11Λ. (b) Measured normalized TE-polarized transmittance (dB) for the device operating as a 3x1 combiner with the reversed transmittance direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v g = d ϖ d k = c 0 n g

Metrics