Abstract

We report construction and characterization of an optoelectronic oscillator (OEO), which is stabilized to an intra-loop Fabry-Perot cavity by a dual servo system. In addition to providing strong mode selection and increasing the Q factor by adding significant loop length, the cavity serves as a stable frequency reference. In order to fully exploit the stability we employ a dual servo system. Carrier frequency is locked to the cavity mode by using Pound-Drever-Hall technique. The OEO loop length is adjusted by comparing the phase difference between the carrier-sideband beat signals at upstream and downstream sides of the cavity so that the OEO mode spacing is commensurate with the free spectral range of the cavity. This dual servo system and additional stabilizations of the seed laser frequency to a cesium transition and the laser power result in an order of magnitude improvement in OEO frequency stability over a previous work using a free-running Fabry-Perot cavity. Long term Allan deviation of the OEO is 6×108. It represents 4×104of the cavity resonance linewidth. We also discuss possibility of relating the OEO frequency to an atomic transition as an absolute frequency reference.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6 (1982).
    [CrossRef]
  2. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725 (1996).
    [CrossRef]
  3. D. Strekalov, D. Aveline, N. Yu, R. Thompson, A. Matsko, and L. Maleki, “Stabilizing an optoelectronic microwave oscillator with photonic filters,” J. Lightwave Technol. 21(12), 3052–3061 (2003).
    [CrossRef]
  4. N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 30(10), 1231–1233 (2005).
    [CrossRef] [PubMed]
  5. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, and P. J. Delfyett, “Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,” Opt. Lett. 35(6), 799–801 (2010).
    [CrossRef] [PubMed]
  6. D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19(10), 105601 (2008).
    [CrossRef]
  7. S. K. Lee, J. J. Kim, and D. Cho, “Transformable optical dipole trap using a phase-modulated standing wave,” Phys. Rev. A 74(6), 063401 (2006).
    [CrossRef]
  8. T. R. Ranganath and S. Wang, “Ti-diffused LiNbO3 branched-waveguide modulators: Performance and design,” IEEE J. Quantum Electron. 13(4), 290–295 (1977).
    [CrossRef]
  9. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83(4), 531–536 (2006).
    [CrossRef]
  10. V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
    [CrossRef]

2010

2008

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19(10), 105601 (2008).
[CrossRef]

2006

S. K. Lee, J. J. Kim, and D. Cho, “Transformable optical dipole trap using a phase-modulated standing wave,” Phys. Rev. A 74(6), 063401 (2006).
[CrossRef]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83(4), 531–536 (2006).
[CrossRef]

2005

2004

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

2003

1996

1982

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6 (1982).
[CrossRef]

1977

T. R. Ranganath and S. Wang, “Ti-diffused LiNbO3 branched-waveguide modulators: Performance and design,” IEEE J. Quantum Electron. 13(4), 290–295 (1977).
[CrossRef]

Akbulut, M.

Aveline, D.

Bartels, A.

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

Cho, D.

S. K. Lee, J. J. Kim, and D. Cho, “Transformable optical dipole trap using a phase-modulated standing wave,” Phys. Rev. A 74(6), 063401 (2006).
[CrossRef]

Cornish, S. L.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19(10), 105601 (2008).
[CrossRef]

Delfyett, P. J.

Diddams, S.

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

Gerginov, V.

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

Hoghooghi, N.

Hollberg, L.

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

Kim, J. J.

S. K. Lee, J. J. Kim, and D. Cho, “Transformable optical dipole trap using a phase-modulated standing wave,” Phys. Rev. A 74(6), 063401 (2006).
[CrossRef]

King, S. A.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19(10), 105601 (2008).
[CrossRef]

Lee, S. K.

S. K. Lee, J. J. Kim, and D. Cho, “Transformable optical dipole trap using a phase-modulated standing wave,” Phys. Rev. A 74(6), 063401 (2006).
[CrossRef]

Maleki, L.

Mandridis, D.

Matsko, A.

McCarron, D. J.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19(10), 105601 (2008).
[CrossRef]

Nazarova, T.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83(4), 531–536 (2006).
[CrossRef]

Neyer, A.

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6 (1982).
[CrossRef]

Ozdur, I.

Piracha, M. U.

Ranganath, T. R.

T. R. Ranganath and S. Wang, “Ti-diffused LiNbO3 branched-waveguide modulators: Performance and design,” IEEE J. Quantum Electron. 13(4), 290–295 (1977).
[CrossRef]

Riehle, F.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83(4), 531–536 (2006).
[CrossRef]

Salik, E.

Sterr, U.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83(4), 531–536 (2006).
[CrossRef]

Strekalov, D.

Tanner, C. E.

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

Thompson, R.

Voges, E.

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6 (1982).
[CrossRef]

Wang, S.

T. R. Ranganath and S. Wang, “Ti-diffused LiNbO3 branched-waveguide modulators: Performance and design,” IEEE J. Quantum Electron. 13(4), 290–295 (1977).
[CrossRef]

Yao, X. S.

Yu, N.

Appl. Phys. B

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83(4), 531–536 (2006).
[CrossRef]

Appl. Phys. Lett.

A. Neyer and E. Voges, “High-frequency electro-optic oscillator using an integrated interferometer,” Appl. Phys. Lett. 40(1), 6 (1982).
[CrossRef]

IEEE J. Quantum Electron.

T. R. Ranganath and S. Wang, “Ti-diffused LiNbO3 branched-waveguide modulators: Performance and design,” IEEE J. Quantum Electron. 13(4), 290–295 (1977).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol. 19(10), 105601 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. A

S. K. Lee, J. J. Kim, and D. Cho, “Transformable optical dipole trap using a phase-modulated standing wave,” Phys. Rev. A 74(6), 063401 (2006).
[CrossRef]

V. Gerginov, C. E. Tanner, S. Diddams, A. Bartels, and L. Hollberg, “Optical frequency measurements of 6s2S1/2 - 6p2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb,” Phys. Rev. A 70(4), 042505 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optoelectronic oscillator. f 1 is the laser frequency and f 2 is the frequency of the sideband produced by the modulator.

Fig. 2
Fig. 2

Experimental setup. ECDL: extended-cavity diode laser; PD: photodetector; LO: local oscillator; PS: power splitter; QWP: quarterwave plate; PMF: polarization-maintaining optical fiber; Δ ϕ : phase shifter; AM: amplitude modulation input; VCO: voltage controlled oscillator.

Fig. 3
Fig. 3

(a) Allan deviation of the OEO frequency without the Fabry-Perot cavity (■) and with the cavity when it is free running (●) and when its loop length is corrected with respect to the cavity free spectral range (○). (b) Microwave spectrum of the OEO output with the loop-length correction. Resolution bandwidth was 1 kHz.

Fig. 4
Fig. 4

The cavity transmission in mW and the error signal in arbitrary units vs. the sideband detuning.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

K q L + ϕ FPC = 2 π q ,
E o u t = T e i δ ϕ / 2 1 - ( 1 - T ) e i δ ϕ E i n ,
E o u t = e i δ ϕ / T E i n .
ϕ FPC = 2 l c δ ω s δ ω c T .
F q = q c L .
δ F q = F q δ L L + 2 l / T .
δ F q = F q 2 δ l / T L + 2 l / T .
f C s = 2 f A O M + q F q ,

Metrics