Abstract

We analyze the influence of the anisotropy of molecular and biological samples on polarization resolved nonlinear microscopy imaging. We show in particular the detrimental influence of birefringence on Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (TPEF) polarization resolved microscopy imaging, which, if not accounted for, can lead to an erroneous determination of the sample properties and thus to a misinterpretation of the read-out information. We propose a method to measure this birefringence and account for this effect in nonlinear polarization resolved experiments.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
    [CrossRef]
  2. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
    [CrossRef] [PubMed]
  3. M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
    [CrossRef]
  4. L. Moreaux, O. Sandrea, and J. Mertz, “Membrane Imaging by Second Harmonic Generation Microscopy,” J. Opt. Soc. Am. B 17, 1685–1689 (2000).
    [CrossRef]
  5. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
    [CrossRef]
  6. D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
    [CrossRef] [PubMed]
  7. M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
    [CrossRef] [PubMed]
  8. O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
    [PubMed]
  9. S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
    [CrossRef] [PubMed]
  10. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
    [CrossRef] [PubMed]
  11. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
    [CrossRef] [PubMed]
  12. J. Borejdo and S. Burlacu, “Measuring Orientation of Actin Filaments within a Cell: orientation of Actin in Intestinal Microvilli,” Biophys. J. 65, 300–309 (1993).
    [CrossRef] [PubMed]
  13. M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
    [CrossRef]
  14. C. Anceau, S. Brasselet, and J. Zyss, ”Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
    [CrossRef]
  15. P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
    [CrossRef]
  16. P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
    [CrossRef] [PubMed]
  17. T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
    [CrossRef]
  18. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377-1386 (2005).
    [CrossRef]
  19. S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
    [CrossRef]
  20. F. Tiaho, G. Recher, and D. Rouéde, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15, 4054–4065 (2007).
    [CrossRef]
  21. C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
    [CrossRef] [PubMed]
  22. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
    [CrossRef] [PubMed]
  23. A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
    [CrossRef] [PubMed]
  24. A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
    [CrossRef] [PubMed]
  25. V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, “Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy,” J. Phys. Chem. B 107, 12403–12410 (2003).
    [CrossRef]
  26. S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett. 92, 207401–204405 (2004).
    [CrossRef] [PubMed]
  27. K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
    [CrossRef]
  28. S. Brasselet, and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Physique 8, 165–179 (2007).
    [CrossRef]
  29. P. Sch¨on, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
    [CrossRef] [PubMed]
  30. B. Richards, and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, ” Proc. R. Soc. London Ser. A. 253, 358–379 (1959).
    [CrossRef]
  31. E. Y. S. Yew, and C. R. J. Sheppard, “Effects of axial field components on second harmonic generation microscopy, ” Opt. Express 14, 1167–1174 (2006).
    [CrossRef] [PubMed]
  32. N. Sandeau, L. L. Xuan, D. Chauvat, C. Zhou, J. F. Roch, and S. Brasselet, “ Defocused imaging of second harmonic generation from a single nanocrystal,” Opt. Express 15, 16051–16060 (2007).
    [CrossRef] [PubMed]
  33. P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
    [CrossRef]
  34. D. Lara and C. Dainty,“Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt. 45, 1917–1930 (2006).
    [CrossRef] [PubMed]
  35. C. E. Bigelow, and T. H. Foster, “Confocal fluorescence polarization microscopy in turbid media: Effects of scattering-induced depolarisation,” J. Opt. Soc. Am. A 23, 2932 (2006).
    [CrossRef]
  36. I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
    [CrossRef]
  37. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  38. D. T. Poh, “Examination of refractive index of human epidermis in-vitro and in-vivo.,” Proc. Inter. Conf. Lasers. 96, 118–125 (1996).

2010 (2)

A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
[CrossRef] [PubMed]

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

2009 (2)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

2008 (5)

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
[PubMed]

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

P. Sch¨on, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (5)

E. Y. S. Yew, and C. R. J. Sheppard, “Effects of axial field components on second harmonic generation microscopy, ” Opt. Express 14, 1167–1174 (2006).
[CrossRef] [PubMed]

D. Lara and C. Dainty,“Axially resolved complete Mueller matrix confocal microscopy,” Appl. Opt. 45, 1917–1930 (2006).
[CrossRef] [PubMed]

C. E. Bigelow, and T. H. Foster, “Confocal fluorescence polarization microscopy in turbid media: Effects of scattering-induced depolarisation,” J. Opt. Soc. Am. A 23, 2932 (2006).
[CrossRef]

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

2005 (4)

C. Anceau, S. Brasselet, and J. Zyss, ”Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

2004 (1)

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett. 92, 207401–204405 (2004).
[CrossRef] [PubMed]

2003 (2)

V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, “Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy,” J. Phys. Chem. B 107, 12403–12410 (2003).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

2002 (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef] [PubMed]

2000 (2)

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

L. Moreaux, O. Sandrea, and J. Mertz, “Membrane Imaging by Second Harmonic Generation Microscopy,” J. Opt. Soc. Am. B 17, 1685–1689 (2000).
[CrossRef]

1997 (1)

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

1996 (2)

D. T. Poh, “Examination of refractive index of human epidermis in-vitro and in-vivo.,” Proc. Inter. Conf. Lasers. 96, 118–125 (1996).

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

1993 (1)

J. Borejdo and S. Burlacu, “Measuring Orientation of Actin Filaments within a Cell: orientation of Actin in Intestinal Microvilli,” Biophys. J. 65, 300–309 (1993).
[CrossRef] [PubMed]

1990 (1)

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

1989 (1)

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

1979 (1)

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
[CrossRef] [PubMed]

1978 (1)

J. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
[CrossRef]

1959 (1)

B. Richards, and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, ” Proc. R. Soc. London Ser. A. 253, 358–379 (1959).
[CrossRef]

Ait-Belkacem, D.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

Anceau, C.

C. Anceau, S. Brasselet, and J. Zyss, ”Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

Araki, T.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
[CrossRef]

Artigas, D.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

Axelrod, D.

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
[CrossRef] [PubMed]

Badan, J.

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

Baffet, G.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

Behrndt, M.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

Bembi, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Bigelow, C. E.

Bolin, F. P.

Borejdo, J.

J. Borejdo and S. Burlacu, “Measuring Orientation of Actin Filaments within a Cell: orientation of Actin in Intestinal Microvilli,” Biophys. J. 65, 300–309 (1993).
[CrossRef] [PubMed]

Bösch, M.

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Brasselet, S.

A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
[CrossRef] [PubMed]

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

P. Sch¨on, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[CrossRef] [PubMed]

N. Sandeau, L. L. Xuan, D. Chauvat, C. Zhou, J. F. Roch, and S. Brasselet, “ Defocused imaging of second harmonic generation from a single nanocrystal,” Opt. Express 15, 16051–16060 (2007).
[CrossRef] [PubMed]

S. Brasselet, and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Physique 8, 165–179 (2007).
[CrossRef]

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, ”Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett. 92, 207401–204405 (2004).
[CrossRef] [PubMed]

Brewer, M.

O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
[PubMed]

Brillert, C.

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

Bruehviler, D.

A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
[CrossRef] [PubMed]

Brustlein, S.

Burlacu, S.

J. Borejdo and S. Burlacu, “Measuring Orientation of Actin Filaments within a Cell: orientation of Actin in Intestinal Microvilli,” Biophys. J. 65, 300–309 (1993).
[CrossRef] [PubMed]

Campagnola, P. J.

O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
[PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Celliers, P. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef] [PubMed]

Chauvat, D.

Chen, W. L.

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Chen, Y. F.

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Chien, Y. H.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Cho, B. R.

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

Czapiga, M.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Da Silva, L. B.

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

Dainty, C.

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

Dieu, L.-Q.

A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
[CrossRef] [PubMed]

Dombeck, D. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Dong, C. Y.

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Dong, C.Y.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Egelhaaf, H. J.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

Favard, C.

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

Ference, R. J.

Fl¨orsheimer, M.

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Fligny, C.

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

Flörsheimer, M.

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

Foster, T. H.

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

Fuchs, H.

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Gailhouste, L.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

Gannaway, J.

J. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
[CrossRef]

Gasecka, A.

A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
[CrossRef] [PubMed]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

P. Sch¨on, F. Munhoz, A. Gasecka, S. Brustlein, and S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16, 20891–20901 (2008).
[CrossRef] [PubMed]

Gierschner, J.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

Han, T.-J.

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

Hanack, M.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

Hernest, M.

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Hwu, W. L.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Hyman, B. T.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Ingelsson, M.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Jazdzyk, M.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

Jee, S. H.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Kasischke, K. A.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Kim, B.M.

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

Kim, K. H.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Komorowska, K.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

LaComb, R.

O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
[PubMed]

Lara, D.

Le Grand, Y.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

Ledoux, I.

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

Lepers, C.

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

Li, F. C.

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Lin, H. H.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Lin, S. J.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Lin, W. C.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Lo, W.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Martin, J. L.

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

Mertz, J.

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Moreaux, L.

Munhoz, F.

Nadiarnykh, O.

O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
[PubMed]

Odin, C.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

Peng, J. L.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Pittis, M. G.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Plotz, P.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Poh, D. T.

D. T. Poh, “Examination of refractive index of human epidermis in-vitro and in-vivo.,” Proc. Inter. Conf. Lasers. 96, 118–125 (1996).

Pourlsen, L.

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

Preuss, L. E.

Prigaud, A.

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

Raben, N.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Radüge, C.

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Ralston, E.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Recher, G.

Reiser, K. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef] [PubMed]

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

Renault, A.

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

Richards, B.

B. Richards, and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, ” Proc. R. Soc. London Ser. A. 253, 358–379 (1959).
[CrossRef]

Rigneault, H.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

Roch, J. F.

Rouéde, D.

Rubenchik, A. M.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef] [PubMed]

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

Salmen, H.

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Sandeau, N.

Sandrea, O.

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

Sasaki, K.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
[CrossRef]

Sch¨on, P.

Schanne-Klein, M. C.

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

Schön, P.

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

Schwartz, O.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Sheppard, C. J. R.

J. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
[CrossRef]

Sheppard, C. R. J.

So, P. T. C.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

Stoller, P.

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef] [PubMed]

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

Strupler, M.

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

Sun, Y.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Swaim, B.

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Tan, H. Y.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Taylor, R. C.

Teng, S. W.

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Terbrack, R.

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Tharaux, P.-L.

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

Tiaho, F.

Tohno, Y.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
[CrossRef]

Vishwasrao, H. D.

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Wierschem, M.

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

Wolf, E.

B. Richards, and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, ” Proc. R. Soc. London Ser. A. 253, 358–379 (1959).
[CrossRef]

Wu, H. Y.

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Xuan, L. L.

Yasui, T.

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
[CrossRef]

Yen, S.

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

Yew, E. Y. S.

Zhou, C.

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

Zyss, J.

S. Brasselet, and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Physique 8, 165–179 (2007).
[CrossRef]

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

C. Anceau, S. Brasselet, and J. Zyss, ”Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

Adv. Mater. (1)

M. Flörsheimer, M. Bösch, C. Brillert, M. Wierschem, and H. Fuchs, “Second-harmonic microscopy - a quantitative probe for molecular surface order,” Adv. Mater. 9, 1061-1065 (1997).
[CrossRef]

Appl. Opt. (2)

Biophys J. (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “3-Dimesional High-Resolution Second Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,” Biophys J. 81, 493–508 (2002).
[CrossRef]

Biophys. J. (8)

O. Nadiarnykh, R. LaComb, M. Brewer, and P. J. Campagnola, “Second Harmonic Generation Imaging Microscopy of Ovarian Cancer,” Biophys. J. 94, 4504–4514 (2008).
[PubMed]

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557–573 (1979).
[CrossRef] [PubMed]

J. Borejdo and S. Burlacu, “Measuring Orientation of Actin Filaments within a Cell: orientation of Actin in Intestinal Microvilli,” Biophys. J. 65, 300–309 (1993).
[CrossRef] [PubMed]

P. Stoller, K. M. Reiser, P. M. Celliers, and A. M. Rubenchik, “Polarization-Modulated Second Harmonic Generation in Collagen,” Biophys. J. 82, 3330–3342 (2002).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting Second-Harmonic Generation Images of Collagen I Fibrils,” Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

S. Yen, W. L. Chen, H. Y. Wu, F. C. Li, W. Lo, S. J. Lin, S. H. Jee, Y. F. Chen, P. T. C. So, and C. Y. Dong, “Collagen Thermal denaturation study with high resolution second harmonic generation imaging and polarization optical microscopy,” Biophys. J. 91, 2620–2625 (2006).
[CrossRef]

A. Gasecka, T.-J. Han, C. Favard, B. R. Cho, and S. Brasselet, “Quantitative imaging of molecular order in lipid membranes using two-photon fuorescence polarimetry,” Biophys. J. 97, 2854–2862 (2009).
[CrossRef] [PubMed]

C. R. Physique (1)

S. Brasselet, and J. Zyss, “Nonlinear polarimetry of molecular crystals down to the nanoscale,” C. R. Physique 8, 165–179 (2007).
[CrossRef]

Chem. Phys. (1)

K. Komorowska, S. Brasselet, J. Zyss, L. Pourlsen, M. Jazdzyk, H. J. Egelhaaf, J. Gierschner, and M. Hanack, “Nanometric scale investigation of the nonlinear efficiency of perhydrotriphynylene inclusion compounds,” Chem. Phys. 318, 12–20 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

C. Anceau, S. Brasselet, and J. Zyss, ”Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98–102 (2005).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

S. W. Teng, H. Y. Tan, J. L. Peng, H. H. Lin, K. H. Kim, W. Lo, Y. Sun, W. C. Lin, S. J. Lin, S. H. Jee, P. T. C. So, and C.Y. Dong, “Multiphoton autofluorescence and second-harmonic generation (SHG) imaging of ex-vivo porcine eye,” Invest. Ophthalmol. Vis. Sci. 47, 1216–1224 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

P. Stoller, B.M. Kim, A. M. Rubenchik, K. M. Reiser, and L. B. Da Silva, “Polarization-dependent optical second harmonic imaging of a rat-tail tendon,” J. Biomed. Opt. 7, 205–214 (2000).
[CrossRef]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[CrossRef] [PubMed]

M. Strupler, M. Hernest, C. Fligny, J. L. Martin, P.-L. Tharaux, and M. C. Schanne-Klein, “Second Harmonic Microscopy to Quantify Renal Interstitial Fibrosis and Arterial Remodeling,” J. Biomed. Opt. 13, 054041 (2008).
[CrossRef] [PubMed]

J. Microsc. (1)

C. Odin, Y. Le Grand, A. Renault, L. Gailhouste, and G. Baffet, “Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy,” J. Microsc. 229, 32–38 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

A. Gasecka, L.-Q. Dieu, D. Bruehviler, and S. Brasselet, “Probing molecular order in zeolite L inclusion compounds using two-photon fluorescence polarimetric microscoy,” J. Phys. Chem. B 114, 4192–4198 (2010).
[CrossRef] [PubMed]

V. Le Floc’h, S. Brasselet, J.-F. Roch, and J. Zyss, “Monitoring of orientation in molecular ensembles by polarization sensitive nonlinear microscopy,” J. Phys. Chem. B 107, 12403–12410 (2003).
[CrossRef]

J. Struct. Biol. (1)

E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben,“Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162, 500–508 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

I. Ledoux, C. Lepers, A. Prigaud, J. Badan, and J. Zyss, “Linear and nonlinear optical properties of N-4-nitrophenyl L-prolinol single crystals,” Opt. Commun. 80, 149–154 (1990).
[CrossRef]

Opt. Express (4)

Opt. Quantum Electron. (2)

T. Yasui, K. Sasaki, Y. Tohno, and T. Araki, “Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation,” Opt. Quantum Electron. 37, 1397–1408 (2005).
[CrossRef]

J. Gannaway and C. J. R. Sheppard, “Second harmonic imaging in the scanning optical microscope,” Opt. Quantum Electron. 10, 435–439 (1978).
[CrossRef]

Phys. Rev. A (1)

P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, and S. Brasselet, “Polarization and Phase Pulse Shaping applied to Structural Contrast in Nonlinear Microscopy Imaging,” Phys. Rev. A 81, 013809 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

S. Brasselet, V. Le Floc’h, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett. 92, 207401–204405 (2004).
[CrossRef] [PubMed]

Proc. Inter. Conf. Lasers. (1)

D. T. Poh, “Examination of refractive index of human epidermis in-vitro and in-vivo.,” Proc. Inter. Conf. Lasers. 96, 118–125 (1996).

Proc. Natl. Acad. Sci. U.S.A. (1)

D. A. Dombeck, K. A. Kasischke, H. D. Vishwasrao, M. Ingelsson, B. T. Hyman, and W. W. Webb, “Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy,” Proc. Natl. Acad. Sci. U.S.A. 100, 7081 (2003).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A. (1)

B. Richards, and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System, ” Proc. R. Soc. London Ser. A. 253, 358–379 (1959).
[CrossRef]

Thin Solid Films (1)

M. Fl¨orsheimer, C. Radüge, H. Salmen, M. Bösch, R. Terbrack, and H. Fuchs, “In-situ imaging of Langmuir monolayers by second-harmonic microscopy,” Thin Solid Films 284, 659–662 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Experimental set-up. D: dichroic mirror, APD: avalanche photodiodes, P: polarizer, M: mirror, S : sample, FLP : long pass filter, FBP : band pass filter. (b) Definition of the input polarization angle α and the birefringence slow axis direction θb relative to X. (c) Experimental configuration: an incident linear polarized field at the ω frequency is focused at a distance d from the sample surface in the optical axis Z direction. The transmitted fields at ω at both the distance d and the sample output distance L are elliptical if the sample is birefringent. The emitted field (fluorescence or 2ω for SHG) is measured in the epi direction.

Fig. 2.
Fig. 2.

(a) Theoretical linear polarimetric responses Iω X through a birefringent sample at different values of Φ b , for an optical axis tilt of Θ b = 30°. (b) Experimental linear polarimetric responses Iω X,Y (dots) through a collagen type I fiber from a rat-tail tendon, oriented at 45° relative to X. The fit (black lines) uses the model detailed in the text. (c,d) Maps of the mean square error between fitted and experimental intensities: (c) with no dichroic mirror polarization distortion, (d) with polarization distortions (dichroism factor γ = 0.043, ellipticity factor δ = 55°, with the notations of [29]). Fit solutions: Θ b = 44° and Φ b = 97°.

Fig. 3.
Fig. 3.

Theoretical TPEF polarimetric responses ITPEF X (red) and ITPEF Y (green) for a molecular distribution within a large cone aperture (half angle 50°), for different orientations φ 0 of the cone in the (X,Y) frame (corresponding here also to the optical axis orientation Θ b ). (a) φ 0 = Θ b = 0° and (b) φ 0 = Θ b = 45°, with different values of the birefringence phase shift Φ b .

Fig. 4.
Fig. 4.

Experimental birefringence and TPEF polarimetric measurements in a PHTP-DANS 1D crystal. (a) Laser polarimetric response Iω Y of the non-birefringent glass substrate (no crystal). (b,c) Laser polarimetric response through the crystal oriented along the (b) X axis and (c) tilted at about 135° relative to X (as sketched). (d) Fit of the laser polarimetric response (solutions: Θ b = 138°, Φ b = 116°). (e) Fit of the TPEF ITPEF X polarimetric response including birefringence, at a 5 µm penetration depth (solutions: φ 0 = 164°, Θ b = 138°, Φ b = 100°). (f) Fit of the TPEF polarimetric response with no birefringence included. All the fits include the dichroism and ellipticity parameters of the dichroic mirror (dichroism γ = 0.009, ellipticity factor δ = 13° with the mirror used for this experiment [29]).

Fig. 5.
Fig. 5.

Theoretical SHG polarimetric responses (ISHG X (red) and ISHG Y (green)) for a collagen fiber which nonlinear tensor corresponds to a cone half angle aperture distribution of the nonlinear molecular dipoles of 50°. The orientation of the fiber φ 0 also corresponds to the optical axis orientation Θ b . (a) φ 0 = Θ b = 0° and (b) φ 0 = Θ b = 45°, with different values of the birefringence phase shift Φ b .

Fig. 7.
Fig. 7.

Experimental SHG polarimetric responses for collagen type I fibers oriented at about 45° relative to the macroscopic X axis. The experimental parameters are the same as in Fig. 6. The corresponding birefringence parameters obtained from the fits are 52° and φ 0 = −15° for respectively the cone distribution orientation and aperture, and in addition: (a) Θ b = −23°, Φ b = 4°[4µm]; (b) Θ b = −16°, Φ b = 13°[11µm]; (c) Θ b = −12°, Φ b = 75°[64µm]. (d) Birefringence measurement and fit on the Iω X component of the incident field, leading to birefringence parameters of Θ b = 36°, Φ b = 115°[85µm], when the sample is propagated through. The found birefringence axes are represented in the inset scheme.

Fig. 6.
Fig. 6.

Experimental SHG polarimetric responses for collagen type I fibers oriented close to the macroscopic X axis. The SHG images (image scale is in counts/s) represent a 30µm×30µm area of the sample scanned at different depth d: (a) 2µm, (b) 20µm, (c) 60µm. Both SHG experimental intensities IX (red dots) and IY (green dots) are depicted (after normalization for more visibility), together with the corresponding fit according to the model detailed in the text. The parameters obtained from the fits are 52° and φ 0 = 10° for respectively the cone distribution orientation and aperture, and: (a) Θ b = 7°, Φ b = 19°[14µm];(b) Θ b = 9°, Φ b = 29°[22µm];(c) Θ b = 2°, Φ b = 88°[65µm]. (d) Birefringence measurement and fit on the Iω X component of the incident field, leading to birefringence parameters of Θ b = 18°, Φ b = 119°[88µm], when the sample is propagated through. The found birefringence axes are represented in the inset scheme.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I I = ( X , Y ) TPEF ( α ) = 0 2 π 0 π μ abs ( θ , ϕ ) · E ( α ) 4 μ em ( θ , ϕ ) · I 2 f ( θ , ϕ ) sin θ d θ d ϕ
I I = ( X , Y ) SHG ( α ) = Σ J , K χ IJK ( 2 ) E J ω ( α ) E K ω ( α ) 2
[ E X ( Z = d ) E Y ( Z = d ) ] = [ exp ( i Φ b ( d ) ) · cos Θ b sin Θ b exp ( i Φ b ( d ) ) · sin Θ b cos Θ b ] · [ cos Θ b sin Θ b sin Θ b cos Θ b ] · [ E X 0 ( α ) E Y 0 ( α ) ]

Metrics