Abstract

The control and localization of light at sub-wavelength scale are theoretically demonstrated with a very simple sub-wavelength dimension structure. This is demonstrated through a peculiar structure that can support localized modes which are not linked to any plasmon resonance. It is based on the acronym ”FEMTO” that is designed using 26 sub-wavelength rectangular apertures engraved into perfectly conducting metal screen. A polarization-sensitive guided mode through these nano-apertures is at the origin of the light localization. Consequently, sub-wavelength light spots can be achieved with very simple structures illuminated by temporally shaped plane waves. Three parameters are temporally controlled for this purpose: the polarization, the wavelength and the amplitude of the incident beam. It is also demonstrated that replacing the perfect conductor by a real metal with dispersion leads to accentuate both the light confinement and its localization. These results open the path to the conception of optical nano-structures dedicated to sub-wavelength light addressing.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003).
    [CrossRef]
  2. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
    [CrossRef]
  3. T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
    [CrossRef] [PubMed]
  4. T.-W. Lee, and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B 71, 35423 (2005).
    [CrossRef]
  5. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
    [CrossRef] [PubMed]
  6. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
    [CrossRef] [PubMed]
  7. S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).
  8. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
    [CrossRef] [PubMed]
  9. X. Li, and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer femtosecond scale by time reversal,” Phys. Rev. B 77, 195109 (2008).
    [CrossRef]
  10. G. Lévêque, and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone,” Phys. Rev. Lett. 100, 117402 (2008).
    [CrossRef] [PubMed]
  11. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  12. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
    [CrossRef]
  13. F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
    [CrossRef]
  14. A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
    [CrossRef]
  15. E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
    [CrossRef]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
    [CrossRef]
  17. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  18. J. Vigoureux, “Analysis of the Ebbesen experiments in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
    [CrossRef]
  19. F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003).
    [CrossRef]
  20. F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
    [CrossRef]

2008

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

X. Li, and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer femtosecond scale by time reversal,” Phys. Rev. B 77, 195109 (2008).
[CrossRef]

G. Lévêque, and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone,” Phys. Rev. Lett. 100, 117402 (2008).
[CrossRef] [PubMed]

2007

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

2006

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

2005

E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
[CrossRef]

T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

T.-W. Lee, and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B 71, 35423 (2005).
[CrossRef]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
[CrossRef]

2004

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

2003

F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003).
[CrossRef]

2002

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

2001

J. Vigoureux, “Analysis of the Ebbesen experiments in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
[CrossRef]

2000

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

1998

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Anceau, C.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

Baida, F.

F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
[CrossRef]

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003).
[CrossRef]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Bergman, D. J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Bonod, N.

E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
[CrossRef]

Boyer, P.

E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
[CrossRef]

Brasselet, S.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Byeon, C.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Choi, S.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

de Abajo, F. J. G.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Ebbesen, T.

A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Enoch, S.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Ghaemi, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gordon, R.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Granet, G.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Gray, S. K.

T.-W. Lee, and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B 71, 35423 (2005).
[CrossRef]

Guizal, B.

F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
[CrossRef]

Jeong, M.-S.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Kim, D. S.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Ko, D.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Kubo, A.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Kumar, L. K. S.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Labeke, D. V.

F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
[CrossRef]

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Lee, T.-W.

T.-W. Lee, and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B 71, 35423 (2005).
[CrossRef]

Lévêque, G.

G. Lévêque, and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone,” Phys. Rev. Lett. 100, 117402 (2008).
[CrossRef] [PubMed]

Lezec, H.

A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, X.

X. Li, and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer femtosecond scale by time reversal,” Phys. Rev. B 77, 195109 (2008).
[CrossRef]

Lienau, C.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Martin, O. J. F.

G. Lévêque, and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone,” Phys. Rev. Lett. 100, 117402 (2008).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Moreau, A.

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Moreno, E.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

Nevière, M.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Nevire, M.

E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
[CrossRef]

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Pagani, Y.

F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003).
[CrossRef]

Park, D.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Petek, H.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Pfeiffer, J. S. W.

T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Popov, E.

E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Poujet, Y.

F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
[CrossRef]

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

Stockman, M. I.

X. Li, and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer femtosecond scale by time reversal,” Phys. Rev. B 77, 195109 (2008).
[CrossRef]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Thio, T.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Van Labeke, D.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Vigoureux, J.

J. Vigoureux, “Analysis of the Ebbesen experiments in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
[CrossRef]

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yamamoto, N.

A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

Zyss, J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

Appl. Phys. B

F. I. Baida, D. V. Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79, 1–8 (2004).
[CrossRef]

Nano Lett.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5, 1123 (2005).
[CrossRef] [PubMed]

Nature

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301 (2007).
[CrossRef] [PubMed]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Degiron, H. Lezec, N. Yamamoto, and T. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004).
[CrossRef]

E. Popov, M. Nevire, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255, 338–348 (2005).
[CrossRef]

J. Vigoureux, “Analysis of the Ebbesen experiments in the light of evanescent short range diffraction,” Opt. Commun. 198, 257–263 (2001).
[CrossRef]

F. I. Baida, D. V. Labeke, and Y. Pagani, “Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes,” Opt. Commun. 255, 241–252 (2003).
[CrossRef]

F. Baida, Y. Poujet, B. Guizal, and D. V. Labeke, “New design for enhanced transmission and polarization control through near-field optical microscopy probes,” Opt. Commun. 256, 190–195 (2005).
[CrossRef]

Opt. Eng.

S. Choi, D. Park, C. Lienau, M.-S. Jeong, C. Byeon, D. Ko, and D. S. Kim, “Femtosecond phase control of spatial localization of the optical near-field in a metal nanoslit array,” Opt. Eng. 16, 12075 (2008).

Phys. Rev. B

T.-W. Lee, and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B 71, 35423 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[CrossRef]

X. Li, and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer femtosecond scale by time reversal,” Phys. Rev. B 77, 195109 (2008).
[CrossRef]

Phys. Rev. Lett.

G. Lévêque, and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: An optical analog of the xylophone,” Phys. Rev. Lett. 100, 117402 (2008).
[CrossRef] [PubMed]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: Nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92, 57402 (2004).
[CrossRef]

T. Brixner, F. J. G. de Abajo, and J. S. W. Pfeiffer, “Nanoscopic ultrafast space-time-resolved spectroscopy,” Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Physica B

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Femtosecond energy concentration in nanosystems: coherent control,” Physica B 338, 361 (2003).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (235 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of a single rectangular aperture engraved into a free-standing 50 nm thick metallic film. (b) presents the two near-field spectra for the two polarization states along x (blue) and y (red) in the case of silver film. (c) is the light distribution at 30 nm from the exit side of the silver film corresponding to the transmission peak of Fig. 1(b). Spectra for perfect conductor film are presented on (d) to point out first, the well-known blue shift of the transmission peak in comparison with the case of silver film [in comparison with Fig. 1(b)] and second, the same, but smaller, blue shift that occurs when the metal thickness increases [see solid and dotted lines in (d)]. All the presented results are obtained through FDTD simulations where the silver dispersion is described by a Drude model that is given in Ref. [13].

Fig. 2.
Fig. 2.

(a) Schematic of the word ”FEMTO” composed of 26 rectangular apertures of the same width (30 nm) while their length increases linearly from left to right along both the x and y directions. (b) and (c) are spectra calculated by each detector at 30 nm above the output interface of the metallic film. Because of the polarization properties of the guided modes, the red detectors are only sought for an x-polarized incident wave while the blue ones only detect signal for the orthogonal polarization (along y-direction).

Fig. 3.
Fig. 3.

Temporal variations of the electric field of the initial injected plane wave illuminating the metallic film.

Fig. 4.
Fig. 4.

Light intensity distributions at 30 nm above the exit metallic interface at times corresponding to the switch on of each letter. Note that the time origin corresponds to plane wave injection at the entrance side of the structure. So, 32.98−30 ≃ 3 fs are necessary for light to go through the four apertures composing the letter “F”.

Fig. 5.
Fig. 5.

(Media 1) Movie showing the spatiotemporal light distribution at 30 nm from the output side of the structure (down). The amplitude of the two electric field components are given at the top of the movie through the instantaneous position of the two red and blue circles. For example, the instantaneous amplitude of the electric field is about 0.04 at time t = 92;16 fs corresponding to the switching of the letter ”M” (Ex = 0.016 and Ey = 0.038). The obtained intensity 30 nm in front of the eight apertures is then I = 1 meaning that a confinement factor of 590 is obtained. This latter greatly depends on the geometry of the aperture.

Tables (1)

Tables Icon

Table 1. Wavelength and weighting factor values for specific times corresponding to the switching of each letter. n = 0 and n = 7 correspond to the beginning and the end of the pulse respectively. The switching of the five letters of the word ”FEMTO” occurs from n = 1 (for ”F”) to n = 6 (for ”O”)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λ c TE 10 = 2 a
E x ( t ) = A x ( t ) cos ( ϕ x ( t ) k z z )
E y ( t ) = A y ( t ) cos ( ϕ y ( t ) k z z )
E z ( t ) = 0
λ x , y = 2 π c ϕ ˙ x , y ( t )
λ x ( t ) = 2.7211 × 10 6 t ( s ) + 3.3277 × 10 7 ( m )
λ y ( t ) = 2.8390 × 10 6 t ( s ) + 4.0628 × 10 7 ( m )
ϕ x ( t ) = 2 π c ln ( λ x ( t ) ) 2.7211 × 10 6
ϕ y ( t ) = 2 π c ln ( λ y ( t ) ) 2.8390 × 10 6
A x , y ( t ) = { 0 for t < t 1 ( w x , y n + 1 w x , y n ) sin ω 0 ( t t n ) + w x , y n for t n < t < t n + 1 and n = 1 , 6 0 for t t 7

Metrics