Abstract

We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
    [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006), doi:.
    [CrossRef] [PubMed]
  5. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
    [CrossRef]
  6. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
    [CrossRef]
  7. Q. Cheng, and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159v1 (2009).
  8. C. Caloz, and T. Itoh, Electromagnetic Metamaterial, (IEEE Press, Wiley, Hoboken NJ, 2006).
  9. C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics,” IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004).
    [CrossRef]
  10. C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004).
    [CrossRef]
  11. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [CrossRef]
  12. J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17(9), 7640–7647 (2009), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
    [CrossRef] [PubMed]
  13. X. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003).
    [CrossRef]
  14. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29(6), 617–619 (2004), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/ol/search.cfm .
    [CrossRef] [PubMed]
  15. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
    [CrossRef]
  16. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
    [CrossRef] [PubMed]
  17. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  18. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
    [CrossRef]
  19. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
    [CrossRef] [PubMed]
  20. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  21. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [CrossRef] [PubMed]
  22. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
    [CrossRef] [PubMed]
  23. L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007).
    [CrossRef]
  24. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
    [CrossRef] [PubMed]
  25. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
    [CrossRef] [PubMed]
  26. L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [CrossRef]
  27. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
    [CrossRef]
  28. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press: Orlando, 1985).
  31. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [CrossRef] [PubMed]

2010 (1)

C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
[CrossRef]

2009 (7)

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[CrossRef]

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[CrossRef]

J. Y. Chin, J. N. Gollub, J. J. Mock, R. P. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17(9), 7640–7647 (2009), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

2008 (3)

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[CrossRef]

2007 (3)

L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

2006 (4)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006), doi:.
[CrossRef] [PubMed]

2005 (3)

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

2004 (3)

S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29(6), 617–619 (2004), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/ol/search.cfm .
[CrossRef] [PubMed]

C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics,” IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004).
[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004).
[CrossRef]

2003 (1)

X. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Alekseyev, L. V.

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Bartal, G.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Belov, P. A.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[CrossRef]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Caloz, C.

C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics,” IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004).
[CrossRef]

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[CrossRef] [PubMed]

Chau, Y. F.

L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007).
[CrossRef]

Chen, C.

Chin, J. Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cui, T. J.

Dong, X. C.

Du, C. L.

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Fan, S. H.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[CrossRef] [PubMed]

X. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003).
[CrossRef]

Fang, A.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Foteinopoulou, S.

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[CrossRef]

Gao, H. T.

Genov, D. A.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[CrossRef]

Gollub, J. N.

Hao, Y.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[CrossRef]

Harrison, C.

Itoh, T.

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004).
[CrossRef]

C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics,” IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004).
[CrossRef]

Jacob, Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Koschny, T.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[CrossRef]

Lee, H.

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Li, D. D.

C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
[CrossRef]

Liu, R. P.

Liu, Y. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Liu, Z.

Liu, Z. W.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[CrossRef]

Luo, X. G.

Mock, J. J.

Narimanov, E.

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

Pendry, J. B.

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16(15), 11555–11567 (2008), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006), doi:.
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Prather, D. W.

Pustai, D. M.

Rahm, M.

Roberts, D. A.

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Sanada, A.

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006), doi:.
[CrossRef] [PubMed]

Sharkawy, A.

Shen, L. F.

L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007).
[CrossRef]

Shi, H. F.

Shi, S.

Smith, D. R.

Soukoulis, C. M.

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[CrossRef]

Stacy, A. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Sun, C.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Wang, C. T.

Wang, Y.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Xiong, Y.

Yan, C. C.

C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
[CrossRef]

Yang, T. J.

L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007).
[CrossRef]

Yao, J.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Yu, X.

X. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003).
[CrossRef]

Yu, Z. F.

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[CrossRef]

Zhang, D. H.

C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
[CrossRef]

Zhang, S.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[CrossRef]

Zhang, X.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[CrossRef]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007), http://www.opticsinfobase.org.ezlibproxy1.ntu.edu.sg/oe/search.cfm .
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhang, Y.

C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[CrossRef]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[CrossRef]

X. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251 (2003).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95(7), 071112 (2009).
[CrossRef]

L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabola like dispersion,” Appl. Phys. Lett. 90(25), 251909 (2007).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

C. Caloz and T. Itoh, “A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics,” IEEE Microw. Wirel. Compon. Lett. 14(1), 31–33 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech. 52(3), 980–992 (2004).
[CrossRef]

J. Opt. (1)

C. C. Yan, D. H. Zhang, D. D. Li, and Y. Zhang, “Dual refractions in metal nanorod-based metamaterials,” J. Opt. 12(6), 065102 (2010).
[CrossRef]

Nano Lett. (1)

L. Verslegers, P. B. Catrysse, Z. F. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. H. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Nat. Phys. (1)

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5(9), 687–692 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (5)

A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B 79(24), 245127 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73(11), 113110 (2006).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects,” Phys. Rev. B 72(16), 165112 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103(3), 033902 (2009).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006), doi:.
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other (3)

Q. Cheng, and T. J. Cui, “An electromagnetic black hole made of metamaterials,” arXiv:0910.2159v1 (2009).

C. Caloz, and T. Itoh, Electromagnetic Metamaterial, (IEEE Press, Wiley, Hoboken NJ, 2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press: Orlando, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross-sectional schematic of a metamaterial consisting of alternative silver and alumina layers covered by a chromium layer containing one slit. The geometric dimensions are w = 16 nm, b = 100 nm, h = 2000 nm, and a = 105 nm. The slit width d is a variable.

Fig. 2
Fig. 2

Energy flow distributions for different slit widths d with the 660 nm incidence. (a) d = 50 nm; (b) d = 100 nm; (c) d = 300 nm; (d) d = 500 nm; (e) d = 660 nm; (f) d = 1000 nm. Note that h = 2000 nm in (a) to (d) while h = 3000 nm in (e) and (f). Additionally, the slits in (a) and (b) are located between two silver layers in the x direction.

Fig. 3
Fig. 3

Energy flow distributions for different positions of the slit relative to the sliver layers. (a) The right side of the slit is aligned with the left side of a certain silver layer; (b) The slit locates symmetrically on the silver layer; (c) The right side of the slit is aligned with the left side of the silver layer. The other parameters are the same as those in Fig. 2(a).

Fig. 4
Fig. 4

Wave vector diagram. The construction line represents the case of θ = 20 degrees. The solid and dashed curves in the metamaterial denote the equifrequency contours for wavelengths of 660 nm and 690 nm, respectively. The circle is the equifrequency contour for vacuum. The normalized component k // a/2π = sinθk 0 a/2π = 0.054 with λ = 660 nm can be obtained.

Fig. 5
Fig. 5

Energy flow distribution in the metamaterial structure, where we assume that a Gaussian beam with a radius of 400 nm is obliquely incident onto the metamaterial from air with a 20 degree angle after the chromium is removed. The simulated dimensions in the incident region, the metamaterial region, and the transmitted region are 26a × 1000 nm, 26a × 2000 nm, and 26a × 1000nm, respectively. The other parameters are the same as those used in Fig. 1.

Fig. 6
Fig. 6

Energy flow distributions in the structures with different numbers of silver layers. (a) one layer; (b) two layers; (c) four layers; (d) six layers; (e) eight layers; (f) ten layers; (g) twelve layers. The other parameters used are the same as those in Fig. 1.

Fig. 7
Fig. 7

Energy flow distributions for different thicknesses of silver layers either adjacent to one slit or in the middle of two slits. (a) 26 nm thick for one slit; (b) 36 nm thick for one slit; (c) 56 nm thick for one slit; (d) 26 nm thick for two slits; (e) 36 nm thick for two slits; (f) 56 nm thick for two slits. All the slits are 50 nm wide, and the other parameters used are the same as those in Fig. 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos ( k x a ) = cos [ ( 1 f m ) p x a ] cosh ( f m q x a ) 1 2 ( ε m p x ε d q x                                 ε d q x ε m p x ) sin [ ( 1 f m ) p x a ] sinh ( f m q x a ) ,

Metrics