Abstract

This work demonstrates the feasibility of a novel dispersion engineered ultrathin metal film coated on a tapered fiber with a thickness of around 10nm. To our knowledge, the dispersion characteristics of the proposed device induced by such an extremely thin metal film are described here for the first time. Experimental and simulation results indicate that the metal thin film has unique dispersion properties and intrinsic optical characteristics of strong absorption and high reflection in the near infrared light of a wavelength range of 1.25~1.65μm, making the material and waveguide dispersions of tapered-fibers more tailorable. In addition to the ability to flatten the slope of the fundamental-mode cutoff of the transmission spectrum, the dispersion profile is heavily influenced when the ultrathin metal film is coated around the proposed tapered fibers. The optical characteristics of the spectral response caused by the ultrathin film on tapered microfibers are also investigated and analyzed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon- polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
    [CrossRef]
  2. A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B Chem. 73(2-3), 95–99 (2001).
    [CrossRef]
  3. A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
    [CrossRef]
  4. J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B Chem. 122(2), 442–449 (2007).
    [CrossRef]
  5. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor With Enhanced Sensitivity,” IEEE Photon. Technol. Lett. 19(22), 1786–1788 (2007).
    [CrossRef]
  6. R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008).
    [CrossRef]
  7. B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
    [CrossRef]
  8. A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16(12), 2978–2982 (1999).
    [CrossRef]
  9. R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
    [CrossRef]
  10. G. B. Smith and A. I. Maaroof, “Optical response in nanostructured thin metal films with dielectric over-layers,” Opt. Commun. 242(4-6), 383–392 (2004).
    [CrossRef]
  11. A. Diez, M. V. Andres, and D. O. Culverhouse, “In-Line Polarizers and Filters Made of Metal-Coated Tapered Fibers: Resonant Excitation of Hybrid Plasma Modes,” IEEE Photon. Technol. Lett. 10(6), 833–835 (1998).
    [CrossRef]
  12. R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54(1-2), 74–79 (1999).
    [CrossRef]
  13. M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [CrossRef]
  14. R. Willsch, “High performance metal-clad fiber-optic polarisers,” Electron. Lett. 26(15), 1113–1115 (1990).
    [CrossRef]
  15. R. Scarmozzino and R. M. Osgood., “Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8(5), 724–731 (1991).
    [CrossRef]
  16. P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
    [CrossRef]
  17. H. A. Macleod, Thin Film Optical Filters, 3rd Ed., Institute of Physics Publishing, (Bristol and Philadelphia, 2001), Chap. 2 and Chap.4.
  18. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006), Chap. 3.
  19. http://refractiveindex.info
  20. S.-Y. Chou, K.-C. Hsu, N.-K. Chen, S.-K. Liaw, Y.-S. Chih, Y. Lai, and S. Chi, “Analysis of Thermo-Optic Tunable Dispersion-Engineered Short-Wavelength-Pass Tapered-Fiber Filters,” J. Lightwave Technol. 27(13), 2208–2215 (2009).
    [CrossRef]

2009 (1)

2008 (2)

R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008).
[CrossRef]

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

2007 (2)

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B Chem. 122(2), 442–449 (2007).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor With Enhanced Sensitivity,” IEEE Photon. Technol. Lett. 19(22), 1786–1788 (2007).
[CrossRef]

2004 (1)

G. B. Smith and A. I. Maaroof, “Optical response in nanostructured thin metal films with dielectric over-layers,” Opt. Commun. 242(4-6), 383–392 (2004).
[CrossRef]

2003 (1)

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

2001 (2)

R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B Chem. 73(2-3), 95–99 (2001).
[CrossRef]

1999 (3)

R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54(1-2), 74–79 (1999).
[CrossRef]

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16(12), 2978–2982 (1999).
[CrossRef]

1998 (1)

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-Line Polarizers and Filters Made of Metal-Coated Tapered Fibers: Resonant Excitation of Hybrid Plasma Modes,” IEEE Photon. Technol. Lett. 10(6), 833–835 (1998).
[CrossRef]

1996 (1)

A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
[CrossRef]

1991 (1)

1990 (2)

F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon- polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

R. Willsch, “High performance metal-clad fiber-optic polarisers,” Electron. Lett. 26(15), 1113–1115 (1990).
[CrossRef]

Andres, M. V.

A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B Chem. 73(2-3), 95–99 (2001).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16(12), 2978–2982 (1999).
[CrossRef]

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-Line Polarizers and Filters Made of Metal-Coated Tapered Fibers: Resonant Excitation of Hybrid Plasma Modes,” IEEE Photon. Technol. Lett. 10(6), 833–835 (1998).
[CrossRef]

A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
[CrossRef]

Arregui, F. J.

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B Chem. 122(2), 442–449 (2007).
[CrossRef]

Birks, T. A.

A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
[CrossRef]

Brynd, E.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

Burton, F. A.

F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon- polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

Cahill, L. W.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

Cassidy, S. A.

F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon- polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

Chen, N.-K.

Chi, S.

Chih, Y.-S.

Chou, S.-Y.

Corres, J. M.

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B Chem. 122(2), 442–449 (2007).
[CrossRef]

Cruz, J. L.

A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B Chem. 73(2-3), 95–99 (2001).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16(12), 2978–2982 (1999).
[CrossRef]

Ctyroky, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54(1-2), 74–79 (1999).
[CrossRef]

Culverhouse, D. O.

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-Line Polarizers and Filters Made of Metal-Coated Tapered Fibers: Resonant Excitation of Hybrid Plasma Modes,” IEEE Photon. Technol. Lett. 10(6), 833–835 (1998).
[CrossRef]

A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
[CrossRef]

Diez, A.

A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B Chem. 73(2-3), 95–99 (2001).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16(12), 2978–2982 (1999).
[CrossRef]

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-Line Polarizers and Filters Made of Metal-Coated Tapered Fibers: Resonant Excitation of Hybrid Plasma Modes,” IEEE Photon. Technol. Lett. 10(6), 833–835 (1998).
[CrossRef]

A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
[CrossRef]

Gupta, B. D.

R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor With Enhanced Sensitivity,” IEEE Photon. Technol. Lett. 19(22), 1786–1788 (2007).
[CrossRef]

Homola, J.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54(1-2), 74–79 (1999).
[CrossRef]

Hsu, K.-C.

Huntington, S. T.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

Jha, R.

R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008).
[CrossRef]

Jian, S.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Katsifolis, J.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

Lai, Y.

Li, B.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Liaw, S.-K.

Liu, Y.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Maaroof, A. I.

G. B. Smith and A. I. Maaroof, “Optical response in nanostructured thin metal films with dielectric over-layers,” Opt. Commun. 242(4-6), 383–392 (2004).
[CrossRef]

Manikova, Z.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

Matias, I. R.

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B Chem. 122(2), 442–449 (2007).
[CrossRef]

Moar, P. N.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

Nugent, K. A.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

Osgood, R. M.

Piliarik, M.

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

Ren, W.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Roberts, A.

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

Scarmozzino, R.

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor With Enhanced Sensitivity,” IEEE Photon. Technol. Lett. 19(22), 1786–1788 (2007).
[CrossRef]

Slavik, R.

R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54(1-2), 74–79 (1999).
[CrossRef]

Smith, G. B.

G. B. Smith and A. I. Maaroof, “Optical response in nanostructured thin metal films with dielectric over-layers,” Opt. Commun. 242(4-6), 383–392 (2004).
[CrossRef]

Tan, Z.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Verma, R. K.

R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor With Enhanced Sensitivity,” IEEE Photon. Technol. Lett. 19(22), 1786–1788 (2007).
[CrossRef]

Wang, Y.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Wei, H.

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

Willsch, R.

R. Willsch, “High performance metal-clad fiber-optic polarisers,” Electron. Lett. 26(15), 1113–1115 (1990).
[CrossRef]

Electron. Lett. (2)

A. Diez, M. V. Andres, D. O. Culverhouse, and T. A. Birks, “Cylindrical metal-coated optical fibre devices for filters and sensors,” Electron. Lett. 32(15), 1390–1392 (1996).
[CrossRef]

R. Willsch, “High performance metal-clad fiber-optic polarisers,” Electron. Lett. 26(15), 1113–1115 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Diez, M. V. Andres, and D. O. Culverhouse, “In-Line Polarizers and Filters Made of Metal-Coated Tapered Fibers: Resonant Excitation of Hybrid Plasma Modes,” IEEE Photon. Technol. Lett. 10(6), 833–835 (1998).
[CrossRef]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor With Enhanced Sensitivity,” IEEE Photon. Technol. Lett. 19(22), 1786–1788 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. N. Moar, S. T. Huntington, J. Katsifolis, L. W. Cahill, A. Roberts, and K. A. Nugent, “Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors,” J. Appl. Phys. 85(7), 3395–3398 (1999).
[CrossRef]

J. Lightwave Technol. (2)

F. A. Burton and S. A. Cassidy, “A complete description of the dispersion relation for thin metal film plasmon- polaritons,” J. Lightwave Technol. 8(12), 1843–1849 (1990).
[CrossRef]

S.-Y. Chou, K.-C. Hsu, N.-K. Chen, S.-K. Liaw, Y.-S. Chih, Y. Lai, and S. Chi, “Analysis of Thermo-Optic Tunable Dispersion-Engineered Short-Wavelength-Pass Tapered-Fiber Filters,” J. Lightwave Technol. 27(13), 2208–2215 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

B. Li, Y. Liu, Z. Tan, H. Wei, Y. Wang, W. Ren, and S. Jian, “Using of non-uniform stress effect to realize the tunable dispersion of the fiber Bragg grating with tapered metal coatings,” Opt. Commun. 281(6), 1492–1499 (2008).
[CrossRef]

G. B. Smith and A. I. Maaroof, “Optical response in nanostructured thin metal films with dielectric over-layers,” Opt. Commun. 242(4-6), 383–392 (2004).
[CrossRef]

Plasmonics (1)

R. Jha, R. K. Verma, and B. D. Gupta, “Surface Plasmon Resonance-Based Tapered Fiber Optic Sensor: Sensitivity Enhancement by Introducing a Teflon Layer between Core and Metal Layer,” Plasmonics 3(4), 151–156 (2008).
[CrossRef]

Sens. Actuators B Chem. (5)

R. Slavik, J. Homola, J. Ctyroky, and E. Brynd, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001).
[CrossRef]

A. Diez, M. V. Andres, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B Chem. 73(2-3), 95–99 (2001).
[CrossRef]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B Chem. 122(2), 442–449 (2007).
[CrossRef]

R. Slavik, J. Homola, and J. Ctyroky, “Single-mode optical fiber surface plasmon resonance sensor,” Sens. Actuators B Chem. 54(1-2), 74–79 (1999).
[CrossRef]

M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

Other (3)

H. A. Macleod, Thin Film Optical Filters, 3rd Ed., Institute of Physics Publishing, (Bristol and Philadelphia, 2001), Chap. 2 and Chap.4.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006), Chap. 3.

http://refractiveindex.info

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Diagram of the proposed Al-coated tapered optical fiber structure. (b) Cross section of the device. (c) Side view of the uniform waist of Al-coated tapered fiber with a good shine of metal gloss by the 1000 × CCD camera. (d) Experimental setup used to measure the transmission spectra of the proposed devices.

Fig. 2
Fig. 2

Schematic diagram of mode field propagation in the tapered core that stretches through Al film and extends to the outer material in the tapered waist.

Fig. 3
Fig. 3

Refractive index dispersion profiles for the (a) SMF-28 tapered fiber and optical liquid Cargille® index liquids, (b) metal material, aluminum: Al used in the simulation.

Fig. 7
Fig. 7

Simulation results of (a) transmission spectra and (b) effective indices of the fundamental mode for the UTMCTMF filters with Al film of 10nm at different lengths of Al thin film 0.5cm, 1.5cm and 3.0cm.

Fig. 4
Fig. 4

(a) Experimental and simulated transmission spectra of uniform tapered waist D = 30μm with non-coated (red lines) and Al-coated UTMCTMF of 10nm (blue lines), (b) Diagram of cutoff, transmission, transition and attenuation wavelength regions of optical spectra.

Fig. 5
Fig. 5

Simulation results of (a) transmission spectra, (b) effective indices, and (c) dispersion profiles of fundamental-mode in the UTMCTMF at different Al-coated thicknesses with a thin film length of L = 1.5cm, where the Cargille®optical liquid is nD = 1.456.

Fig. 6
Fig. 6

Simulation results of (a) transmission spectra and (b) effective indices of the fundamental mode for UTMCTMF filters when using different Cargille index liquids.

Fig. 8
Fig. 8

Simulation results of (a) transmission spectra and (b) effective indices of the fundamental mode for the UTMCTMF filters with Al film of 10nm at different waist diameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

b = n e f f 2 n s 2 n c 2 n s 2
E = E 0 exp ( α L ) exp ( i ( ω t β L ) )
D = λ c d 2 n e f f d λ 2

Metrics