Abstract

We propose and demonstrate a fiber-optic incoherent signal processing scheme to achieve extraordinary dispersion amounts on arbitrary microwave signals with bandwidths over tens of GHz. Using this new scheme, we experimentally achieve microwave dispersion values approaching 24 ns/GHz (equivalent to the dispersion induced by a section of standard single-mode fiber with a length of ~185,000 km). The scheme is used for real-time Fourier transformation (linear frequency-to-time mapping) of nanosecond-long microwave signals, including a square-like waveform, a sinusoidal pulse and a double pulse waveform, with bandwidths over 20 GHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8(4), 232–234 (1983).
    [CrossRef] [PubMed]
  2. J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
    [CrossRef]
  3. H. Chi and J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
    [CrossRef]
  4. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [CrossRef]
  5. S. Thomas, A. Malacarne, F. Fresi, L. Potì, A. Bogoni, and J. Azaña, “Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering,” Opt. Lett. 34(4), 545–547 (2009).
    [CrossRef] [PubMed]
  6. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14(24), 11575–11584 (2006).
    [CrossRef] [PubMed]
  7. Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
    [CrossRef] [PubMed]
  8. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
    [CrossRef]
  9. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [CrossRef]
  10. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  11. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
    [CrossRef]
  12. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, ““Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” IEEE/OSA,” J. Lightwave Technol. 24(7), 2663–2675 (2006).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear fiber optics (Elsevier, 2007)
  14. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
    [CrossRef]
  15. J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wirel. Comp. Lett. 16(4), 215–217 (2006).
    [CrossRef]
  16. J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
    [CrossRef]
  17. Y. Park and J. Azaña, “Optical signal processors based on a time-spectrum convolution,” Opt. Lett. 35(6), 796–798 (2010).
    [CrossRef] [PubMed]
  18. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  19. V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).
  20. Y. Park and J. Azaña, “Ultrafast photonic intensity integrator,” Opt. Lett. 34(8), 1156–1158 (2009).
    [CrossRef] [PubMed]
  21. V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
    [CrossRef]
  22. http://www.proximion.com
  23. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18(12), 950–952 (1993).
    [CrossRef] [PubMed]
  24. Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008).
    [CrossRef]
  25. C. Dorrer, “Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion,” J. Opt. Soc. Am. B 21(8), 1417–1423 (2004).
    [CrossRef]

2010 (1)

2009 (2)

2008 (4)

Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008).
[CrossRef]

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

2007 (4)

J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

H. Chi and J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[CrossRef] [PubMed]

V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
[CrossRef]

2006 (3)

2005 (1)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

2004 (1)

2003 (1)

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

2000 (1)

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

1999 (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

1993 (1)

1983 (1)

Ahn, T.-J.

Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008).
[CrossRef]

Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[CrossRef] [PubMed]

Andrés, P.

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
[CrossRef]

Azaña, J.

Y. Park and J. Azaña, “Optical signal processors based on a time-spectrum convolution,” Opt. Lett. 35(6), 796–798 (2010).
[CrossRef] [PubMed]

Y. Park and J. Azaña, “Ultrafast photonic intensity integrator,” Opt. Lett. 34(8), 1156–1158 (2009).
[CrossRef] [PubMed]

S. Thomas, A. Malacarne, F. Fresi, L. Potì, A. Bogoni, and J. Azaña, “Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering,” Opt. Lett. 34(4), 545–547 (2009).
[CrossRef] [PubMed]

Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008).
[CrossRef]

Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007).
[CrossRef] [PubMed]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wirel. Comp. Lett. 16(4), 215–217 (2006).
[CrossRef]

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, ““Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” IEEE/OSA,” J. Lightwave Technol. 24(7), 2663–2675 (2006).
[CrossRef]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

Benito, D.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Berger, N. K.

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

Bogoni, A.

Capmany, J.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Chi, H.

H. Chi and J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

Dorrer, C.

Erro, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Fischer, B.

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Fresi, F.

Fujimoto, J. G.

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Garde, M. J.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Guglielmi, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Hee, M. R.

Izatt, J. A.

Jacobson, J. M.

Jalali, B.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

Jannson, T.

Kieffer, J.-C.

Kim, D. Y.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

Lancis, J.

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
[CrossRef]

Laso, M. A. G.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Levit, B.

Li, F.

Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008).
[CrossRef]

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Lopetegi, T.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Malacarne, A.

Moon, S.

Muriel, M. A.

V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
[CrossRef]

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Park, Y.

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Plant, D. V.

J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wirel. Comp. Lett. 16(4), 215–217 (2006).
[CrossRef]

Potì, L.

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Sales, S.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

Schwartz, J. D.

J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wirel. Comp. Lett. 16(4), 215–217 (2006).
[CrossRef]

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Sorolla, M.

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

Swanson, E. A.

Thomas, S.

Torres-Company, V.

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
[CrossRef]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Yao, J. P.

H. Chi and J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time–space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

IEEE Microwave Wirel. Comp. Lett. (1)

J. D. Schwartz, J. Azaña, and D. V. Plant, “Experimental demonstration of real-time spectrum analysis using dispersive microstrip,” IEEE Microwave Wirel. Comp. Lett. 16(4), 215–217 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Park, T.-J. Ahn, F. Li, and J. Azaña, “Synchronized generation of reconfigurable microwave sinusoidal wave-packets from a free-running pulsed laser,” IEEE Photon. Technol. Lett. 20(13), 1115–1117 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (4)

M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, “Real-time spectrum analysis in microstrip technology,” IEEE Trans. Microw. Theory Tech. 51(3), 705–717 (2003).
[CrossRef]

J. D. Schwartz, J. Azaña, and D. V. Plant, “A fully electronic system for the time magnification of ultra-wideband signals,” IEEE Trans. Microw. Theory Tech. 55(2), 327–334 (2007).
[CrossRef]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

H. Chi and J. P. Yao, “All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion,” IEEE Trans. Microw. Theory Tech. 55(9), 1958–1963 (2007).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” IEEE/OSA J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Nature (1)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Opt. Commun. (2)

V. Torres-Company, J. Lancis, and P. Andrés, “Flat-top ultra-wideband photonic filters based on mutual coherence function synthesis,” Opt. Commun. 281, 1438–1444 (2008).

V. Torres-Company, J. Lancis, P. Andrés, and M. A. Muriel, “Real-time optical spectrum analyzers operating with spectrally incoherent broadband continuous-wave light source,” Opt. Commun. 273(2), 320–323 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Other (2)

http://www.proximion.com

G. P. Agrawal, Nonlinear fiber optics (Elsevier, 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of operation principle for photonic microwave dispersion based on the concept of incoherent time-frequency convolution. (b) Schematic of the experimental setup used for proof-of-concept demonstrations. MZM: electro-optic Mach-Zehnder modulator. LCFG: linearly-chirped fiber Bragg grating. 50/50: fiber-optic coupler with 50% power-split ratio. D1: 100-m non-zero dispersion shifted fiber. D1: 100-m standard single-mode fiber. D: fast InGaAs photodetector. Amp: differential RF amplifier.

Fig. 2
Fig. 2

Spectral transmission measurement at the output of the fiber-optic dispersion-unbalanced Mach-Zehnder interferometer.

Fig. 3
Fig. 3

Experimental results for the RTFT of a square-like electrical pulse: (a) Measured input intensity waveform after light modulation, and (b) Measured intensity waveform at the output of the created microwave dispersive filter. The measured waveform in full time scale is also shown in the inset together with the numerically calculated Fourier transform amplitude of the measured input time waveform in (a).

Fig. 4
Fig. 4

Experimental results for the RTFT of a sinusoid electrical pulse with the same captions as for Fig. 3.

Fig. 5
Fig. 5

Experimental results for the RTFT of an electrical double-pulse waveform with the same captions as for Fig. 3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I o u t ( t ) S ( ω = t D 0 ) I m w ( t )
Δ ω m w 2 < < 8 π | D 0 |
ω 0 = τ D 0
D m w = D 0 2 Δ D = N D 0
Δ ω m w < Δ t h | D m w | 1 | N | Δ ω o p t
I o u t ( t ) I ˜ m w ( Ω = 0 ) + [ | I ˜ m w ( Ω ) | cos ( Φ m w ( Ω ) + ω 0 t + [ 1 / 2 D m w ] t 2 ) ] Ω = t D m w τ D 0

Metrics