Abstract

A novel statistical model based on texture and shape for fully automatic intraretinal layer segmentation of normal retinal tomograms obtained by a commercial 800nm optical coherence tomography (OCT) system is developed. While existing algorithms often fail dramatically due to strong speckle noise, non-optimal imaging conditions, shadows and other artefacts, the novel algorithm’s accuracy only slowly deteriorates when progressively increasing segmentation task difficulty. Evaluation against a large set of manual segmentations shows unprecedented robustness, even in the presence of additional strong speckle noise, with dynamic range tested down to 12dB, enabling segmentation of almost all intraretinal layers in cases previously inaccessible to the existing algorithms. For the first time, an error measure is computed from a large, representative manually segmented data set (466 B-scans from 17 eyes, segmented twice by different operators) and compared to the automatic segmentation with a difference of only 2.6% against the inter-observer variability.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Drexler, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  2. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
    [CrossRef]
  3. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373 (2007).
    [CrossRef]
  4. M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
    [CrossRef]
  5. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
    [CrossRef]
  6. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
    [CrossRef]
  7. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
    [CrossRef]
  8. D. Tolliver, Y. Koutis, H. Ishikawa, J. S. Schuman, and G. L. Miller, “Unassisted Segmentation of Multiple Retinal Layers via Spectral Rounding,” in ARVO(2008).
  9. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009).
    [CrossRef]
  10. I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag. 22(6), 123–151 (2005).
    [CrossRef]
  11. A. Mishra, A. Wong, D. A. Clausi, and P. W. Fieguth, “Quasi-random nonlinear scale space,” Pattern Recognit. Lett. In Press. (Corrected Proof).
  12. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
    [CrossRef]
  13. P. Thevenaz, and M. Unser, “A pyramid approach to sub-pixel image fusion based on mutual information,” in Image Processing, 1996. Proceedings., International Conference on(1996), p. 265.
  14. C. O. S. Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” BIEEE Biomed. Eng. 52(4), 652–663 (2005).
    [CrossRef]
  15. A. K. Mishra, P. W. Fieguth, and D. A. Clausi, “Decoupled Active Contour (DAC) for Boundary Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 99.
  16. T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).
    [CrossRef]
  17. M. Scholz, M. Fraunholz, and J. Selbig, “Nonlinear Principal Component Analysis: Neural Network Models and Applications,” in Principal Manifolds for Data Visualization and Dimension Reduction(2007), pp. 44–67.
  18. M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
    [CrossRef]
  19. A. A. Efros, and W. T. Freeman, “Image quilting for texture synthesis and transfer,” in Proceedings of the 28th annual conference on Computer graphics and interactive techniques(ACM, 2001), pp. 341–346.

2010 (1)

2009 (2)

2008 (1)

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

2007 (1)

2005 (5)

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag. 22(6), 123–151 (2005).
[CrossRef]

C. O. S. Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” BIEEE Biomed. Eng. 52(4), 652–663 (2005).
[CrossRef]

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).
[CrossRef]

D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005).
[CrossRef]

2001 (2)

T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).
[CrossRef]

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef]

Abramoff, M. M. D.

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

Akkin, T.

Baraniuk, R. G.

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag. 22(6), 123–151 (2005).
[CrossRef]

Bizheva, K.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef]

Cabrera Fernández, D.

Cense, B.

Chan, R.

Chen, T.

Choi, S. S.

Clausi, D. A.

Cootes, T. F.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).
[CrossRef]

de Boer, J.

Edwards, G. J.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).
[CrossRef]

Fabritius, T.

Fieguth, P. W.

A. Mishra, A. Wong, D. A. Clausi, and P. W. Fieguth, “Quasi-random nonlinear scale space,” Pattern Recognit. Lett. In Press. (Corrected Proof).

Garvin, M. M. K.

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

Guy, C. L.

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

Jones, S. M.

Joo, C.

Kaplan, F.

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

Kardon, R. R.

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

Kingsbury, N. G.

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag. 22(6), 123–151 (2005).
[CrossRef]

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef]

Kopka, J.

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

Makita, S.

Mishra, A.

Miura, M.

Mujat, M.

Myllylä, R.

Oliver, S. S.

Park, B.

Puliafito, C. A.

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef]

Russell, S. S. R.

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

Salinas, H. M.

Scholz, M.

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

Selbig, J.

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

Selesnick, I. W.

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag. 22(6), 123–151 (2005).
[CrossRef]

Sonka, M. M.

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

Sorzano, C. O. S.

C. O. S. Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” BIEEE Biomed. Eng. 52(4), 652–663 (2005).
[CrossRef]

Taylor, C. J.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).
[CrossRef]

Thevenaz, P.

C. O. S. Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” BIEEE Biomed. Eng. 52(4), 652–663 (2005).
[CrossRef]

Unser, M.

C. O. S. Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” BIEEE Biomed. Eng. 52(4), 652–663 (2005).
[CrossRef]

Werner, J. S.

Wong, A.

Wu, X. X.

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

Yasuno, Y.

Zawadzki, R. J.

BIEEE Biomed. Eng. (1)

C. O. S. Sorzano, P. Thevenaz, and M. Unser, “Elastic registration of biological images using vector-spline regularization,” BIEEE Biomed. Eng. 52(4), 652–663 (2005).
[CrossRef]

Bioinformatics (1)

M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, “Non-linear PCA: a missing data approach,” Bioinformatics 21(20), 3887–3895 (2005).
[CrossRef]

IEEE Signal Process. Mag. (1)

I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The Dual-Tree Complex Wavelet Transform,” IEEE Signal Process. Mag. 22(6), 123–151 (2005).
[CrossRef]

IEEE Trans. Med. Imaging (2)

M. M. K. Garvin, M. M. D. Abramoff, R. R. Kardon, S. S. R. Russell, X. X. Wu, and M. M. Sonka, “Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef]

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active Appearance Models,” IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Pattern Recognit. Lett. (1)

A. Mishra, A. Wong, D. A. Clausi, and P. W. Fieguth, “Quasi-random nonlinear scale space,” Pattern Recognit. Lett. In Press. (Corrected Proof).

Other (6)

A. A. Efros, and W. T. Freeman, “Image quilting for texture synthesis and transfer,” in Proceedings of the 28th annual conference on Computer graphics and interactive techniques(ACM, 2001), pp. 341–346.

M. Scholz, M. Fraunholz, and J. Selbig, “Nonlinear Principal Component Analysis: Neural Network Models and Applications,” in Principal Manifolds for Data Visualization and Dimension Reduction(2007), pp. 44–67.

A. K. Mishra, P. W. Fieguth, and D. A. Clausi, “Decoupled Active Contour (DAC) for Boundary Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 99.

D. Tolliver, Y. Koutis, H. Ishikawa, J. S. Schuman, and G. L. Miller, “Unassisted Segmentation of Multiple Retinal Layers via Spectral Rounding,” in ARVO(2008).

P. Thevenaz, and M. Unser, “A pyramid approach to sub-pixel image fusion based on mutual information,” in Image Processing, 1996. Proceedings., International Conference on(1996), p. 265.

W. Drexler, and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics