Abstract

We describe, model and demonstrate a tunable micro-ring resonator integrated monolithically with a photodiode in a silicon waveguide device. The photodiode is made sensitive to wavelengths at and around 1550nm via the introduction of lattice damage through selective ion implantation. The ring resonator enhances detector responsivity in a 60 μm long waveguide photodiode such that it is 0.14 A/W at −10Vbias with less than 0.2 nA leakage current. The device is tunable such that resonance (and thus detection) can be achieved at any wavelength from 1510 – 1600 nm. We also demonstrate use of the device as a digital switch with integrated power monitoring, 20 dB extinction, and no optical power tapped from the output path to the photodiode. A theoretical description suggests that for a critically coupled resonator where the round trip loss is dominated by the excess defects used to mediate detection, the maximum responsivity is independent of device length. This leads to the possibility of extremely small detector geometries in silicon photonics with no requirement for the use of III-V materials or germanium.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  2. I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion-loss highly efficient high-speed electronic variable attenuators,” Proc. IEEE Opt. Fiber Commun. Conf. 1, Mar. 23–28, pp. 249–251 (2003).
  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  4. J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
    [CrossRef]
  5. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
    [CrossRef] [PubMed]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  8. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
    [CrossRef]
  9. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007).
    [CrossRef] [PubMed]
  10. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
    [CrossRef]
  11. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
    [CrossRef]
  12. P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
    [CrossRef]
  13. M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, and T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
    [CrossRef] [PubMed]
  14. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  15. M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
    [CrossRef]
  16. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
    [CrossRef]
  17. D. F. Logan, Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4L7, Canada, and P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights and P. E. Jessop, are preparing a manuscript to be called “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55μm”.
  18. http://www.epixfab.eu/
  19. F. Van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Compact Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides with 69% Coupling Efficiency”, Optical Fiber Communication Conference (OFC), PDP15 (2006).

2010

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

2009

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

2008

2007

2006

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

2005

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

Asghari, M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
[CrossRef] [PubMed]

Baets, R.

Bienstman, P.

Bowers, J. E.

Bradley, J. B. D.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Casalino, M.

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

Chen, H.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

Chetrit, Y.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Cohen, O.

Coleman, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Corte, F. D.

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Dosunmu, O.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Doylend, J. K.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Fang, A. W.

Foster, P. J.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, and T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Geis, M. W.

Grein, M. E.

Gwilliam, R. M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

Jessop, P. E.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Jones, R.

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Käertner, F. X.

Knights, A. P.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Lennon, D. M.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Luff, B. J.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

Luo, X.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

Lyszczarz, T. M.

Mascher, P.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

Moretti, L.

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

Morse, M.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Palmacci, S. T.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Poon, A. W.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Raday, O.

Rendina, I.

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sarid, G.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schulein, R. J.

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Shafiiha, R.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

Sirleto, L.

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

Smith, B. T.

Spector, S. J.

Sysak, M. N.

Taillaert, D.

Wynn, C. M.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yoon, J. U.

Zheng, D. W.

Appl. Phys. Lett.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 um wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[CrossRef]

Electron. Lett.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett. 46(3), 234 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

J. Appl. Phys.

P. J. Foster, J. K. Doylend, P. Mascher, A. P. Knights, and P. Coleman, “Optical attenuation in defect-engineered silicon rib waveguides,” J. Appl. Phys. 99(7), 073101 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. Casalino, L. Sirleto, L. Moretti, F. D. Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 um,” J. Opt. A, Pure Appl. Opt. 8(10), 909–913 (2006).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion-loss highly efficient high-speed electronic variable attenuators,” Proc. IEEE Opt. Fiber Commun. Conf. 1, Mar. 23–28, pp. 249–251 (2003).

D. F. Logan, Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4L7, Canada, and P. Velha, M. Sorel, R. M. De La Rue, A. P. Knights and P. E. Jessop, are preparing a manuscript to be called “Defect-enhanced Silicon-on-insulator Waveguide Resonant Photodetector with High Sensitivity at 1.55μm”.

http://www.epixfab.eu/

F. Van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Compact Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides with 69% Coupling Efficiency”, Optical Fiber Communication Conference (OFC), PDP15 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the silicon photonic resonator-enhanced defect-mediated photodetector. GCI = grating-coupled input; GCO = grating-coupled output.

Fig. 2
Fig. 2

Schematic of the test setup used to characterize responsivity, optical transmission, and tuning efficiency. The resistor on the DUT represents the thermo-optic tuner. ECL = external cavity laser, PS = polarization scrambler, Amm. = ammeter.

Fig. 3
Fig. 3

Photocurrent and transmitted optical power for resonance peaks near 1550 nm.

Fig. 4
Fig. 4

Output excess loss and photodiode responsivity for the resonance closest to 1550 nm. For this plot, grating coupler loss of 7.5 dB was used to enable a match of the modeled excess loss to measured values.

Fig. 5
Fig. 5

Thermo-optic tuning of the resonance peak wavelengths through a full free spectral range. Inset shows tuning versus thermal power with a tuning efficiency of 44 mW/π.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i p h = P ( z ) γ d z
P ( z ) = P i n c e α z
i p h = P i n c γ α ( 1 e α L ) .
P r e s P 0 = k 1 + ( 1 ε ) ( 1 k ) 2 [ ( 1 ε ) ( 1 k ) ] 1 2 cos θ
P r e s = 1 ε P 0 .
i p h = P 0 γ α .

Metrics