Abstract

Three-dimensional (3D) nanoscale focusing of radially polarized light in far field by a simple plasmonic lens composed of an annular slit and a single concentric groove is reported. The numerical calculations reveal that the incident light is coupled to surface plasmon polaritons (SPP) by the annular slit and a focal spot with a size less than a half of the illumination wavelength is formed in the far field due to the constructive interference of the scattered light by the groove. More importantly, the focal length can be modulated by changing the groove diameter. This structure provides an admirable choice for the nano-optical devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  2. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  3. D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
    [CrossRef]
  4. Y. Y. Yu, D. Z. Lin, L. S. Huang, and C. K. Lee, “Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams,” Opt. Express 17(4), 2707–2713 (2009).
    [CrossRef] [PubMed]
  5. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
    [CrossRef]
  6. B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
    [CrossRef]
  7. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
    [CrossRef]
  8. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
    [CrossRef]
  9. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
    [CrossRef] [PubMed]
  10. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
    [CrossRef]
  11. F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
    [CrossRef]
  12. A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007).
    [CrossRef]
  13. L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
    [CrossRef]
  14. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006).
    [CrossRef] [PubMed]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003).
    [CrossRef]
  16. Y. Kozawa and S. Sato, “Focusing property of a double-ring-shaped radially polarized beam,” Opt. Lett. 31(6), 820–822 (2006).
    [CrossRef] [PubMed]
  17. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
    [CrossRef] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Manipulation of the Pancharatnam phase in vectorial vortices,” Opt. Express 14(10), 4208–4220 (2006).
    [CrossRef] [PubMed]
  19. S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [CrossRef]
  20. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  21. P. Edward, Handbook of Optical Constants of Solids, 1st edition (Academic Press, 1997).
  22. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]

2009 (5)

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[CrossRef] [PubMed]

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Y. Y. Yu, D. Z. Lin, L. S. Huang, and C. K. Lee, “Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams,” Opt. Express 17(4), 2707–2713 (2009).
[CrossRef] [PubMed]

2008 (2)

G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
[CrossRef] [PubMed]

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

2007 (3)

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

2006 (3)

2005 (4)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

2003 (2)

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003).
[CrossRef]

2000 (2)

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Antosiewicz, T. J.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Beversluis, M. R.

Biener, G.

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Brown, T.

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Chang, C. K.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

Chang, Y.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Chen, C. H.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

Chen, Y.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Cheng, T. D.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

Dong, X.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Du, C.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Du, C. L.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

Ebbesen, T. W.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Fu, Y.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

Gao, H.

Garci´a-Vidal, F. J.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

García-Vidal, F.

F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Gl ckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Gu, M.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Hasman, E.

Huang, K.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Huang, L. S.

Jia, B.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Kleiner, V.

Kozawa, Y.

Lee, C.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Lee, C. K.

Y. Y. Yu, D. Z. Lin, L. S. Huang, and C. K. Lee, “Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams,” Opt. Express 17(4), 2707–2713 (2009).
[CrossRef] [PubMed]

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
[CrossRef] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
[CrossRef] [PubMed]

Lezec, H. J.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

Li, J.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Liaw, J.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

Lin, D.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Lin, D. Z.

Y. Y. Yu, D. Z. Lin, L. S. Huang, and C. K. Lee, “Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams,” Opt. Express 17(4), 2707–2713 (2009).
[CrossRef] [PubMed]

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

Liu, J.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Lopez-Tejeira, F.

A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Luo, X.

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Luo, X. G.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

Marti´n-Moreno, L.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

Martin-Moreno, L.

A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007).
[CrossRef]

Martín-Moreno, L.

F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

Nikitin, A.

A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007).
[CrossRef]

Niv, A.

Novotny, L.

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Pniewski, J.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Sato, S.

Shi, H.

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Stranick, S. J.

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Szoplik, T.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Wang, C.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Wróbel, P.

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[CrossRef] [PubMed]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Yeh, C.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Yeh, C. S.

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

Yeh, J.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Youngworth, K.

Yu, L.

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Yu, Y. Y.

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
[CrossRef]

B. Jia, H. Shi, J. Li, Y. Fu, C. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007).
[CrossRef]

D. Z. Lin, C. H. Chen, C. K. Chang, T. D. Cheng, C. S. Yeh, and C. K. Lee, “Subwavelength nondiffraction beam generated by a plasmonic lens,” Appl. Phys. Lett. 92(23), 3 (2008).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Appl. Phys. Lett. 91(23), 233901 (2003).
[CrossRef]

Nano Lett. (3)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film,” Nano Lett. 9(1), 235–238 (2009).
[CrossRef]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Gl ckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (3)

F. López-Tejeira, F. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72(16), 161405 (2005).
[CrossRef]

A. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 35129 (2007).
[CrossRef]

L. Yu, D. Lin, Y. Chen, Y. Chang, K. Huang, J. Liaw, J. Yeh, J. Liu, C. Yeh, and C. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71(4), 41405 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by a concentrically corrugated silver film without a hole,” Phys. Rev. Lett. 102(18), 183902 (2009).
[CrossRef] [PubMed]

Other (1)

P. Edward, Handbook of Optical Constants of Solids, 1st edition (Academic Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of (a) the plasmonic lens; (b) |E| 2 distributions for the plasmonic lens in (a); (c) the two-annulus structure; (d) |E| 2 distributions for the two-annulus structure. The incident light is the radially polarized light.

Fig. 2
Fig. 2

Schematic diagram of the structure proposed to actualize radially polarized light focusing.

Fig. 3
Fig. 3

|E|2 distributions on the optical axis for the structures with grooves in the position of nodes and antinodes. The inset depicts the |E|2 distributions on the optical axis for the structures with groove radius 100 nm smaller than antinode.

Fig. 4
Fig. 4

The curve depicting |E| 2 variation of the focus as a function of the groove depth h.

Fig. 5
Fig. 5

|E| 2 distribution for (a) r = 200 nm, (b) r = 500 nm, (c) r = 800 nm, (d) r = 1100 nm. (e) Cross section of |E| 2 at the focal plane for r = 1100 nm, (f) |E| 2 profile of the focal spot for r = 1100 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( l ) = ( l / L ) exp ( l 2 / 2 L 2 )

Metrics