Abstract

We demonstrate high power (2.1 W) low noise single frequency operation of a tunable compact verical–external–cavity surface–emitting–laser exhibiting a high beam quality. We took advantage of thermal lens–based stability to develop a short (3 – 10 mm) plano–plano external cavity without any intracavity filter. The semiconductor structure emitting at 1µm is optically pumped by a 8W commercial 808 nm multimode diode laser at large incidence angle. For heat management purpose the GaAs-based VECSEL membrane was bonded on a SiC substrate. We measured a low divergence quasi-circular TEM00 beam (M2 = 1.2) close to diffraction limit, with a linear light polarization (> 30 dB).We simulated the steady state laser beam of this unstable cavity using Fresnel diffraction. The side mode suppression ratio is > 45 dB. The free running laser linewidth is 37 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting low intensity noise (< 0.1%), with a cutoff frequency ~ 41MHz above which the shot noise level is reached. The key parameters limiting the laser power and coherence are studied. This design/properties can be extended to other wavelengths.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
    [CrossRef]
  2. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
    [CrossRef]
  3. A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Méndez, “2-2.7μm single frequency tunable Sb–based lasers operating in CW at RT: Microcavity and External cavity VCSELs, DFB,” in Proc. SPIE, vol. 6184, p. 61840N (2006).
  4. A. Garnache, A. Ouvrard, and D. Romanini, “Single–Frequency operation of External–Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15(15), 9403–9417 (2007).
    [CrossRef] [PubMed]
  5. A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009).
    [CrossRef] [PubMed]
  6. M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
    [CrossRef]
  7. A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).
  8. R. H. Abram, K. S. Gardner, E. Riis, and A. I. Ferguson, “Narrow linewidth operation of a tunable optically pumped semiconductor laser,” Opt. Express 12(22), 5434–5439 (2004).
    [CrossRef] [PubMed]
  9. H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett. 30(17), 2260–2262 (2005).
  10. L. Bernstein, “Semiconductor joining by the solid-liquid interdiffusion (SLID) process,” J. Electrochem. Soc. 113, 1282–1288 (1966).
    [CrossRef]
  11. L. A. Coldren, and S. W. Corzine, Diode lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  12. A. E. Siegman, Lasers (University Science Books, Mill Valley (California), 1986).
  13. M. Kuznetsov, M. Stern, and J. Coppeta, “Single transverse mode optical resonators,” Opt. Express 13, 171–181 (2005).
    [CrossRef] [PubMed]
  14. R. P. Muffoletto, “Numerical Techniques for Fresnel Diffraction in Computational Holography,” Ph.D. thesis, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College (2006).
  15. K. Petermann, Laser diode modulation and noise, ADOP (Kluwer Academic, Tokyo, 1988).
    [CrossRef]

2010

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

2009

2007

2006

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

2005

2004

2003

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

1999

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[CrossRef]

1966

L. Bernstein, “Semiconductor joining by the solid-liquid interdiffusion (SLID) process,” J. Electrochem. Soc. 113, 1282–1288 (1966).
[CrossRef]

Abram, R. H.

Albrecht, T.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

Beaudoin, G.

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009).
[CrossRef] [PubMed]

Bernstein, L.

L. Bernstein, “Semiconductor joining by the solid-liquid interdiffusion (SLID) process,” J. Electrochem. Soc. 113, 1282–1288 (1966).
[CrossRef]

Brick, P.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

Cambril, E.

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

Coppeta, J.

Dion, J.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Domenech, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Ferguson, A. I.

Gardner, K. S.

Garnache, A.

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009).
[CrossRef] [PubMed]

A. Garnache, A. Ouvrard, and D. Romanini, “Single–Frequency operation of External–Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit,” Opt. Express 15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Georges, P.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[CrossRef]

Jacquemet, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, M. Stern, and J. Coppeta, “Single transverse mode optical resonators,” Opt. Express 13, 171–181 (2005).
[CrossRef] [PubMed]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[CrossRef]

Larsson, A.

Laurain, A.

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009).
[CrossRef] [PubMed]

Lindberg, H.

Lucas-Leclin, G.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Luft, J.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

Lutgen, S.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

Michon, A.

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[CrossRef]

Myara, M.

Ouvrard, A.

Reill, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

Riis, E.

Romanini, D.

Sagnes, I.

A. Laurain, A. Garnache, A. Michon, G. Beaudoin, E. Cambril, and I. Sagnes, “Design and characteristics of single-frequency TEM00 Electrically-Pumped external-cavity VCSEL,” submitted in Opt. Express (2010).

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, “High power single–frequency continuously–tunable compact extended–cavity semiconductor laser,” Opt. Express 17(12), 9503–9508 (2009).
[CrossRef] [PubMed]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Spath, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[CrossRef]

Stern, M.

Strassner, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

H. Lindberg, A. Larsson, and M. Strassner, “Single-frequency operation of a high-power, long-wavelength semiconductor disk laser,” Opt. Lett. 30(17), 2260–2262 (2005).

Appl. Phys. B

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling,” Appl. Phys. B 86(3), 503–510 (2006).
[CrossRef]

Appl. Phys. Lett.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, “8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm,” Appl. Phys. Lett. 82, 3620–3622 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and characteristics of high-power (> 0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE J. Sel. Top. Quantum Electron. 5, 561–573 (1999).
[CrossRef]

J. Electrochem. Soc.

L. Bernstein, “Semiconductor joining by the solid-liquid interdiffusion (SLID) process,” J. Electrochem. Soc. 113, 1282–1288 (1966).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet, F. Genty, Y. Rouillard, D. Romanini, and E. Cerda-Méndez, “2-2.7μm single frequency tunable Sb–based lasers operating in CW at RT: Microcavity and External cavity VCSELs, DFB,” in Proc. SPIE, vol. 6184, p. 61840N (2006).

R. P. Muffoletto, “Numerical Techniques for Fresnel Diffraction in Computational Holography,” Ph.D. thesis, Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College (2006).

K. Petermann, Laser diode modulation and noise, ADOP (Kluwer Academic, Tokyo, 1988).
[CrossRef]

L. A. Coldren, and S. W. Corzine, Diode lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

A. E. Siegman, Lasers (University Science Books, Mill Valley (California), 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) VECSEL gain structure design and technology. (b) Reflectivity and photoluminescence of the GaAs-based VECSEL gain structure bonded on SiC emitting at 1µm.

Fig. 2.
Fig. 2.

(a) High power single frequency tunable VECSEL design, (b) Thermal lens-based cavity stability: experimental and calculated Gaussian waist w 0 (@1/e 2) on the VECSEL gain mirror varying with L; in inset : experimental pump profile and temperature induced index profile (FEMLAB simulation) in the VECSEL structure (8 W pump power).

Fig. 3.
Fig. 3.

(a) Simulated far field phase map and horizontal intensity profile (dotted line) after 100 round trips for L = 7.5 mm; (b) Far field phase map at high power recorded with a wavefront sensor (field curvature zernike term removed); intensity profile (dotted line) at high power (2.1 W) recorded with a beam profiler (solid line : Gaussian fit).

Fig. 4.
Fig. 4.

(a) Single frequency VECSEL output power in cw at RT. (b) Laser spectrum at high power recorded with a high resolution confocal Fabry Perot (32MHz FWHM); in inset: spectrum recorded with an optical spectrum analyzer (15 GHz resolution).

Fig. 5.
Fig. 5.

Pump RIN p , VECSEL RIN at Pout = 800mW and theoretical RIN transfer function spectra.

Fig. 6.
Fig. 6.

(a) Frequency noise spectral density at 800mW output power (Lc =7.5 mm) : experiment (solid line) and theory without mechanical noise (dash line); in inset Fabry Perot transmission spectrum. (b) Laser power spectral density deduced from experiment showing a 37 kHz linewidth (FWHM) over 1 ms.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t V ( r ) = exp [ ik 0 Δ n ( r ) 2 L μ c ] ,
E m + 1 ( x , y ) = e ik 0 2 L i λ 2 L E m ( x , y ) t V ( x , y ) exp [ ik 0 4 L [ ( x x ) 2 + ( y y ) 2 ] ] d x d y .
RIN Q 2 hc β sp π λ P out × ( η η 1 ) 2 186 dB Hz ,
T ( f ) η ( η 1 ) τ e τ p ω 2 + j η τ p ω 2
FN therm ( f ) RIN P ( f ) × Γ ( f ) 2 × P p 2 R th 2 ,

Metrics