Abstract

In this paper we present a novel long wave length infrared quantum dot photodetector. A cubic shaped 6nm GaN quantum dot (QD) within a large 18 nm Al0.2Ga0.8N QD (capping layer) embedded in Al0.8Ga0.2N has been considered as the unit cell of the active layer of the device. Single band effective mass approximation has been applied in order to calculate the QD electronic structure. The temperature dependent behavior of the responsivity and dark current were presented and discussed for different applied electric fields. The capping layer has been proposed to improve upon the dark current of the detector. The proposed device has demonstrated exceptionally low dark current, therefore low noise, and high detectivity. Excellent specific detectivity (D*) up to ~3 × 108 CmHz 1/ 2/W is achieved at room temperature.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
    [CrossRef]
  2. A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
    [CrossRef]
  3. A. Rogalski, “Infrared Detectors”, NewYork: Gordon and Breach, 155–650 (2000).
  4. S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
    [CrossRef]
  5. X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
    [CrossRef]
  6. J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
    [CrossRef]
  7. S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
    [CrossRef]
  8. D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
    [CrossRef]
  9. A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
    [CrossRef]
  10. L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
    [CrossRef]
  11. U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
    [CrossRef]
  12. Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
    [CrossRef]
  13. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
    [CrossRef]
  14. S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
    [CrossRef]
  15. S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001).
    [CrossRef]
  16. H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
    [CrossRef]
  17. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
    [CrossRef]
  18. T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001).
    [CrossRef]
  19. L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006).
    [CrossRef]
  20. S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).
  21. L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
    [CrossRef]
  22. C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
    [CrossRef]
  23. M. Roy and P. A. Makasym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Phys. Rev. B , 68235308 (2003).
  24. M. Califano and P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 61(16), 10959–10965 (2000).
    [CrossRef]
  25. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
    [CrossRef]
  26. S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
    [CrossRef]
  27. R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
    [CrossRef]
  28. M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996).
    [CrossRef]
  29. A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004).
    [CrossRef]
  30. M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
    [CrossRef] [PubMed]
  31. Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).
  32. X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
    [CrossRef]
  33. P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
    [CrossRef]
  34. A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
    [CrossRef]
  35. H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
    [CrossRef]

2010 (1)

S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).

2009 (2)

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
[CrossRef]

2007 (3)

X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[CrossRef]

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

2006 (3)

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006).
[CrossRef]

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[CrossRef]

2005 (3)

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

2004 (2)

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004).
[CrossRef]

2003 (4)

M. Roy and P. A. Makasym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Phys. Rev. B , 68235308 (2003).

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

2002 (2)

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

2001 (5)

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
[CrossRef]

A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
[CrossRef]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
[CrossRef]

T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001).
[CrossRef]

S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001).
[CrossRef]

2000 (3)

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

M. Califano and P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 61(16), 10959–10965 (2000).
[CrossRef]

1999 (2)

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

1998 (1)

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

1996 (1)

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996).
[CrossRef]

1993 (1)

B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[CrossRef]

1990 (1)

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[CrossRef]

Ambacher, O.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Ariyawansa, G.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

Asgari, A.

S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).

A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004).
[CrossRef]

Baghban, H.

H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
[CrossRef]

Bai, J.

T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001).
[CrossRef]

Bandara, S.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

Bastard, G.

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[CrossRef]

Beekman, D. W.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

Bhattacharya, P.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
[CrossRef]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

Biolatti, E.

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

Bockelmann, U.

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[CrossRef]

Botchkarev, A.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Briddon, P. R.

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996).
[CrossRef]

Buchanan, M.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

Califano, M.

M. Califano and P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 61(16), 10959–10965 (2000).
[CrossRef]

Campbell, J. C.

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

Carlo, M. L. A. D.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Chakrabarti, S.

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

Chen, Z.

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

Chiang, C.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Chu, K.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Chua, S. C.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[CrossRef]

Chyi, J.

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Cingolani, R.

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Coli, G.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Cusack, M. A.

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996).
[CrossRef]

D’Amico, I.

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

De Rinaldis, S.

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

Della Sala, F.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Di Carlo, A.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Dimitrov, R.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Dutta, M.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

Eastman, L. F.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Fan, W. J.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[CrossRef]

Fang, T.-H.

L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006).
[CrossRef]

Faraone, L.

A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004).
[CrossRef]

Gau, Y.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Goldberg, A.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Gunapala, S.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

Harrison, P.

M. Califano and P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 61(16), 10959–10965 (2000).
[CrossRef]

Hilsenbeck, J.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Hsiao, H. Y.

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

Jaros, M.

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996).
[CrossRef]

Jayaweera, P. V. V.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

Ji, L.-W.

L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006).
[CrossRef]

Jiang, H.

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

Jiang, L.

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Jones, K. S.

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Kalafi, M.

A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004).
[CrossRef]

Kennerly, S.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
[CrossRef]

A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
[CrossRef]

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

Kennerly, S. W.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

Kheradmand, R.

S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).

Kim, E.-T.

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

Krishna, S.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
[CrossRef]

A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
[CrossRef]

Lee, C. P.

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
[CrossRef]

Lee, S.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Lee, S. C.

S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001).
[CrossRef]

Levine, B. F.

B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[CrossRef]

Li, S. S.

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Lim, H.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

Lin, S.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Lin, S. D.

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
[CrossRef]

Lin, S. Y.

S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001).
[CrossRef]

Ling, H. S.

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

Little, J.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Liu, H. C.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

Lo, M. C.

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

Lomascolo, M.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Lu, X.

X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[CrossRef]

Lugli, P.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Luo, J.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Madhukar, A.

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

Makasym, P. A.

M. Roy and P. A. Makasym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Phys. Rev. B , 68235308 (2003).

Matsik, S. G.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

Mears, C.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Meen, T.-H.

L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006).
[CrossRef]

Meisner, M. J.

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[CrossRef]

X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
[CrossRef]

Mi, K.

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

Morkoç, H.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Movaghar, B.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

Murphy, M.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Ngo, C. Y.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[CrossRef]

Pan, D.

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

Perera, A. G. U.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

Phillips, J.

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

Rafol, S. B.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

Razeghi, M.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

Rieger, W.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Rinaldi, R.

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

Ross, C. E.

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Rossi, F.

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

Rostami, A.

H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
[CrossRef]

Roy, M.

M. Roy and P. A. Makasym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Phys. Rev. B , 68235308 (2003).

Sadoogi, N.

H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
[CrossRef]

Saghai, H. R.

H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
[CrossRef]

Sakai, S.

T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001).
[CrossRef]

Sala, F. D.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Schaake, H.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Schaff, W. J.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Shafer, T.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Shealy, J. R.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Shih, C.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Shishech, S.

S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).

Sills, T.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

Singh, J.

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

Smart, J.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Stiff, A.

A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
[CrossRef]

Stiff, A. D.

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
[CrossRef]

Stiff-Roberts, A. D.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

Stintz, A.

X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
[CrossRef]

Stutzmann, M.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Su, X. H.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

Szafraniec, J.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

Tang, H.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Tang, S.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Taylor, M.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Tennakone, K.

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

Towe, E.

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

Traetta, G.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Traetta, H. M. G.

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

Tsai, Y. R.

S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001).
[CrossRef]

Tsao, S.

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

Uppal, P.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Vaillancourt, J.

X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[CrossRef]

Wang, L. W.

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

Wang, S. Y.

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
[CrossRef]

Wang, T.

T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001).
[CrossRef]

Weimann, N. G.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Weng, P.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Williamson, A. J.

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

Winn, M.

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Wittmer, L.

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

Wu, H. W.

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
[CrossRef]

Yang, S.

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Ye, Z.

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

Yeh, N.

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Yoon, S. F.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[CrossRef]

Zhang, W.

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

Zunger, A.

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

Appl. Phys. Lett. (9)

S. Y. Wang, S. D. Lin, H. W. Wu, and C. P. Lee, “Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer,” Appl. Phys. Lett. 78(8), 1023 (2001).
[CrossRef]

X. Lu, J. Vaillancourt, and M. J. Meisner, “Temperature-dependent photoresponsivity and high-temperature (190 K) operation of a quantum dot infrared photodetector,” Appl. Phys. Lett. 91(5), 051115 (2007).
[CrossRef]

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

A. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “High-detectivity, normal-incidence, mid-infrared (λ~4 μm)InAs/GaAs quantum-dot detector operating at 150 K,” Appl. Phys. Lett. 79(3), 421 (2001).
[CrossRef]

L. Jiang, S. S. Li, N. Yeh, J. Chyi, C. E. Ross, and K. S. Jones, “In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K,” Appl. Phys. Lett. 82(12), 1986 (2003).
[CrossRef]

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot Infrared photodetectors,” Appl. Phys. Lett. 83(6), 1234 (2003).
[CrossRef]

S. Y. Lin, Y. R. Tsai, and S. C. Lee, “High-performance InAs/GaAs quantum-dot infrared photodetectors with a single-sided Al0.3Ga0.7 blocking layer,” Appl. Phys. Lett. 78(18), 2784–2786 (2001).
[CrossRef]

L. W. Wang, A. J. Williamson, A. Zunger, H. Jiang, and J. Singh, “Comparison of the k⋅p and direct diagonalization approaches to the electronic structure of InAs/GaAs quantum dots,” Appl. Phys. Lett. 76(3), 339–342 (2000).
[CrossRef]

P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G. U. Perera, “Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature,” Appl. Phys. Lett. 86(19), 191106 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

Z. Ye, J. C. Campbell, Z. Chen, E.-T. Kim, and A. Madhukar, “Normal-Incidence InAs Self-Assembled Quantum-Dot Infrared Photodetectors With a High Detectivity,” IEEE J. Quantum Electron. 38, 1534–1538 (2002).

A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron. 37(11), 1412–1419 (2001).
[CrossRef]

J. Phillips, P. Bhattacharya, S. W. Kennerly, D. W. Beekman, and M. Dutta. “Self-assembled InAs-GaAs quantum-dot intersubband detectors,” IEEE J. Quantum Electron. 35(6), 936–943 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photon. Technol. Lett. 16(5), 1361–1363 (2004).
[CrossRef]

S. Tang, C. Chiang, P. Weng, Y. Gau, J. Luo, S. Yang, C. Shih, S. Lin, and S. Lee, “High-temperature operation normal incident 256/spl times/256 InAs-GaAs quantum-dot infrared photodetector focal plane array,” IEEE Photon. Technol. Lett. 18(8), 986–988 (2006).
[CrossRef]

Infra. Phys. Technol. (1)

S. Y. Wang, M. C. Lo, H. Y. Hsiao, H. S. Ling, and C. P. Lee, “Temperature dependent responsivity of quantum dot Infrared photodetectors,” Infra. Phys. Technol. 50, 166 (2007).
[CrossRef]

J. Appl. Phys. (3)

B. F. Levine, “Quantum well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993).
[CrossRef]

A. Asgari, M. Kalafi, and L. Faraone, “The effects of partially occupied sub-bands on two-dimensional electron mobility in AlxGa1-xN/GaN heterostructures,” J. Appl. Phys. 95(3), 1185 (2004).
[CrossRef]

O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. 85(6), 3222 (1999).
[CrossRef]

J. Cryst. Growth (1)

T. Wang, J. Bai, and S. Sakai, “Influence of InGaN/GaN quantum-well structure on the performance of light-emitting diodes and laser diodes grown on sapphire substrates,” J. Cryst. Growth 224(1-2), 5–10 (2001).
[CrossRef]

J. Phys. D Appl. Phys. (1)

X. Lu, J. Vaillancourt, M. J. Meisner, and A. Stintz, “Long wave infrared InAs-InGaAs quantum-dot infrared photodetector with high operating temperature over 170 K,” J. Phys. D Appl. Phys. 40(19), 5878–5882 (2007).
[CrossRef]

Microelectron. J. (1)

A. G. U. Perera, P. V. V. Jayaweera, G. Ariyawansa, S. G. Matsik, K. Tennakone, M. Buchanan, H. C. Liu, X. H. Su, and P. Bhattacharya, “Room temperature nano- and microstructure photon detectors,” Microelectron. J. 40(3), 507–511 (2009).
[CrossRef]

Nanotechnology (1)

M. Razeghi, H. Lim, S. Tsao, J. Szafraniec, W. Zhang, K. Mi, and B. Movaghar, “Transport and photodetection in self-assembled semiconductor quantum dots,” Nanotechnology 16(2), 219–229 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. R. Saghai, N. Sadoogi, A. Rostami, and H. Baghban, “Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD),” Opt. Commun. 282(17), 3499–3508 (2009).
[CrossRef]

Opt. Eng. (1)

A. Goldberg, S. Kennerly, J. Little, T. Shafer, C. Mears, H. Schaake, M. Winn, M. Taylor, and P. Uppal, “Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays,” Opt. Eng. 42(1), 30–46 (2003).
[CrossRef]

Opt. Quantum Electron. (1)

S. Shishech, A. Asgari, and R. Kheradmand, “The effect of temperature on the recombination rate of AlGaN/GaN light emitting diodes,” Opt. Quantum Electron. , under press (2010).

Phys. Lett. A (1)

L.-W. Ji, T.-H. Fang, and T.-H. Meen, “Effects of strain on the characteristics of InGaN-GaN multiple quantum dot blue light emitting diodes,” Phys. Lett. A 355(2), 118–121 (2006).
[CrossRef]

Phys. Rev. B (8)

H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi, “‘’Quantum dot infrared photodetectors: Comparison of experiment and theory,” Phys. Rev. B 72(8), 085332 (2005).
[CrossRef]

U. Bockelmann and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B 42(14), 8947–8951 (1990).
[CrossRef]

S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing,” Phys. Rev. B 65(8), 081309 (2002).
[CrossRef]

R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, P. Lugli, H. M. G. Traetta, G. Coli, M. L. A. D. Carlo, F. D. Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B 61(4), 2711–2715 (2000).
[CrossRef]

M. A. Cusack, P. R. Briddon, and M. Jaros, “Electronic structure of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 54(4), R2300–R2303 (1996).
[CrossRef]

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. C. Chua, “Effects of size and shape on electronic states of quantum dots,” Phys. Rev. B 74(24), 245331 (2006).
[CrossRef]

M. Roy and P. A. Makasym, “Efficient method for calculating electronic states in self-assembled quantum dots,” Phys. Rev. B , 68235308 (2003).

M. Califano and P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots,” Phys. Rev. B 61(16), 10959–10965 (2000).
[CrossRef]

Other (1)

A. Rogalski, “Infrared Detectors”, NewYork: Gordon and Breach, 155–650 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The proposed cubic shaped GaN QD within a large A l 0.2 G a 0.8 N QD.

Fig. 2
Fig. 2

Energy diagram for the proposed structure and the strongest transition ‘a’.

Fig. 3
Fig. 3

The behavior of absorption vs. the photon energy for different GaN QD sizes at T=77 K (the QD sizes are Lx=Ly, and Lz=3nm).

Fig. 4
Fig. 4

The responsivity of GaN QDIP (the QD sizes are Lx=Ly=10nm and Lz=3nm) as a function of temperature for different applied electric field.

Fig. 5
Fig. 5

The normalized responsivity of GaN QDIP (the QD sizes are Lx=Ly=10nm and Lz=3nm) as a function of the external electric field for different temperatures.

Fig. 6
Fig. 6

The dark current vs. external electric field for GaN QDIP (the QD sizes are Lx=Ly=10nm and Lz=3nm) at different temperatures.

Fig. 7
Fig. 7

The peak of specific detectivity versus temperature for GaN QDIP (the QD sizes are Lx=Ly=10, and Lz=3nm) in applied bias of 1 V.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H = 2 2 1 m * ( x , y , z ) + v ( x , y , z ) .
m ( x , y , z ) = { m * G a N i n Q D m * A l 0.2 G a 0.8 N i n c a p p i n g l a y e r m * A l 0.8 G a 0.2 N i n b a r r i e r ,
V ( x , y , z ) = { 0 i n s i d e G a N Q D Δ E c e l s e .
Δ E c = 0.7 ( x × 6.13 + ( 1 x ) × 3.42 x ( 1 x ) E g 0 ) e V ,
H = 2 2 1 m * ( x , y , z ) + v ( x , y , z ) + e F . r
F d = L b r ( P t o t b r P t o t d ) ε 0 ( L d ε b r + L b r ε d ) .
P t o t b r / d = P p i e z o b r / d + P s p b r / d .
ψ n x , n y , n z ( x , y , z ) = 1 L x L y L z n x , n y , n z a n x , n y , n z exp i ( k n x . x + k n y . y + k n z . z ) .
f i f = 2 m 2 ( E i E f ) ​     | r i f | 2 ,
α = π N d n o p e 2 m * ε ε 0 c ( n i n f ) f i f Γ ( ω ω i f ) 2 + Γ 2 ,
n i = e E i / k B T ( s e E s / k B T + t e E t / k B T + ε c d ε ρ ( ε ) f ( ε ) / N d ) ,
R = e ω g η ,
g = μ F L C b e
η = α ( ω ) L ( ν e c e E e c ( F ) / k B T     ν 0 + ν e c e E e c ( F ) / k B T ) ,
R / R 0 = n i ( υ e c e E e c ( F ) / k B T υ 0 + υ e c e E e c ( F ) / k B T ) F .
I d a r k = A e μ F N d ( 1 n e ) C b e s υ s c g s 0 f s 1 + w s c f s ( 1 n e ) C b e × e E s c / k B T e ς E s c 3 / 2 / e F a e ς E s c 1 / 2 e e F a / k B T 1 e ς E s c 1 / 2 e e F a / k B T .
D = r e s p o n s i v i t y × A n o i s e Δ f = R A Δ f i N .

Metrics