Abstract

A Mach-Zehnder modulator (MZM) based analog to digital converter (ADC) is described. The signal to be digitized is applied to a single electrode of a high speed unbalanced modulator that acts as a quantizer. The rest of the system consists of commercially available wavelength division multiplexing (WDM) components. Analysis indicates that 6 bit operation at 40 Giga Samples per second (GS/s) is possible with moderate optical carrier power.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
    [CrossRef]
  2. C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters,” Opt. Lett. 28(12), 986–988 (2003).
    [CrossRef] [PubMed]
  3. S. Oda and A. Maruta, “A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
    [CrossRef]
  4. T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
    [CrossRef]
  5. R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
    [CrossRef]
  6. Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With Dynamic Counter-Propagating Effects Compensation for 5-Bit All-Optical Analog-to-Digital Conversion and Its Performance Evaluations,” J. Lightwave Technol. 28(4), 415–422 (2010).
    [CrossRef]
  7. B. Shoop, Photonic analog-to-digital conversion, (Springer-Verlag, 2001).
  8. C. Sarantos and N. Dagli, “An Unbalanced MZM based Photonic Analog-to-Digital Converter,” Proceedings of IEEE/LEOS 2007 Annual Meeting, pp. 110-111, 2007.
  9. Q. Wu, H. Zhang, Y. Peng, X. Fu, and M. Yao, “40GS/s Optical analog-to-digital conversion system and its improvement,” Opt. Express 17(11), 9252–9257 (2009).
    [CrossRef] [PubMed]
  10. E. A. J. Marcatili, “Optical subpicosecond gate,” Appl. Opt. 19(9), 1468–1476 (1980).
    [CrossRef] [PubMed]
  11. J. J. Veselka and S. K. Korotky, “Pulse Generation for Soliton Systems Using Lithium Niobate Modulators,” IEEE J. Sel. Top. Quantum Electron. 2(2), 300–310 (1996).
    [CrossRef]
  12. H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
    [CrossRef]
  13. D. J. Bachmann, N. Dagli, J. Calusdian, P. E. Pace, and J. P. Powers, Optical Pulse Train Generation Using Modulator Cascades,” Proceedings of IEEE/LEOS 2008 Annual Meeting, Paper TuF-4, pp. 190–191, Newport Beach, CA, November 9–13, 2008.
  14. N. Dagli, “Wide Bandwidth Lasers and Modulators for RF Photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
    [CrossRef]
  15. K. M. Noguchi and H. Miyazawa, “Design of Ultra Broad Band LiNbO3 Optical Modulators with Ridge Structure,” IEEE Trans. Microw. Theory Tech. MTT-43, 2203–2207 (1995).
  16. J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007).
    [CrossRef]
  17. Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
    [CrossRef]
  18. G. Agrawal, Fiber Optic Communications Systems, Section 4.6.1, (Wiley, 1997).

2010 (2)

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Y. Miyoshi, S. Takagi, S. Namiki, and K. Kitayama, “Multiperiod PM-NOLM With Dynamic Counter-Propagating Effects Compensation for 5-Bit All-Optical Analog-to-Digital Conversion and Its Performance Evaluations,” J. Lightwave Technol. 28(4), 415–422 (2010).
[CrossRef]

2009 (1)

2008 (1)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[CrossRef]

2007 (1)

J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007).
[CrossRef]

2005 (1)

S. Oda and A. Maruta, “A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[CrossRef]

2003 (1)

1999 (2)

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

N. Dagli, “Wide Bandwidth Lasers and Modulators for RF Photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[CrossRef]

1998 (1)

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

1996 (1)

J. J. Veselka and S. K. Korotky, “Pulse Generation for Soliton Systems Using Lithium Niobate Modulators,” IEEE J. Sel. Top. Quantum Electron. 2(2), 300–310 (1996).
[CrossRef]

1995 (1)

K. M. Noguchi and H. Miyazawa, “Design of Ultra Broad Band LiNbO3 Optical Modulators with Ridge Structure,” IEEE Trans. Microw. Theory Tech. MTT-43, 2203–2207 (1995).

1980 (2)

H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
[CrossRef]

E. A. J. Marcatili, “Optical subpicosecond gate,” Appl. Opt. 19(9), 1468–1476 (1980).
[CrossRef] [PubMed]

Bhushan, A.

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

Coppinger, F.

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

Dagli, N.

J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007).
[CrossRef]

N. Dagli, “Wide Bandwidth Lasers and Modulators for RF Photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[CrossRef]

Davies, B. L.

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Eggleton, B. J.

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Fu, X.

Haus, H. A.

H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
[CrossRef]

Imai, Y.

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

Itoh, K.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[CrossRef]

Jalali, B.

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

Kato, K.

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

Kirsch, S. T.

H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
[CrossRef]

Kitayama, K.

Konishi, T.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[CrossRef]

Korotky, S. K.

J. J. Veselka and S. K. Korotky, “Pulse Generation for Soliton Systems Using Lithium Niobate Modulators,” IEEE J. Sel. Top. Quantum Electron. 2(2), 300–310 (1996).
[CrossRef]

Leonberger, F. J.

H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
[CrossRef]

Liu, X.

Madden, S.

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Marcatili, E. A. J.

Maruta, A.

S. Oda and A. Maruta, “A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[CrossRef]

Mathyssek, K.

H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
[CrossRef]

Miyamoto, Y.

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

Miyazawa, H.

K. M. Noguchi and H. Miyazawa, “Design of Ultra Broad Band LiNbO3 Optical Modulators with Ridge Structure,” IEEE Trans. Microw. Theory Tech. MTT-43, 2203–2207 (1995).

Miyoshi, Y.

Namiki, S.

Nishitani, T.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[CrossRef]

Noguchi, K. M.

K. M. Noguchi and H. Miyazawa, “Design of Ultra Broad Band LiNbO3 Optical Modulators with Ridge Structure,” IEEE Trans. Microw. Theory Tech. MTT-43, 2203–2207 (1995).

Oda, S.

S. Oda and A. Maruta, “A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[CrossRef]

Pant, R.

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Peng, Y.

Shin, J. H.

J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007).
[CrossRef]

Takagi, S.

Tsunetsugu, H.

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

Veselka, J. J.

J. J. Veselka and S. K. Korotky, “Pulse Generation for Soliton Systems Using Lithium Niobate Modulators,” IEEE J. Sel. Top. Quantum Electron. 2(2), 300–310 (1996).
[CrossRef]

Wu, Q.

Wu, S.

J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007).
[CrossRef]

Xiong, C.

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Xu, C.

Yao, M.

Yoneyama, M.

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

Zhang, H.

Appl. Opt. (1)

Electron. Lett. (1)

Y. Miyamoto, M. Yoneyama, Y. Imai, K. Kato, and H. Tsunetsugu, “40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection,” Electron. Lett. 34(5), 493–494 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, S. T. Kirsch, K. Mathyssek, and F. J. Leonberger, “Picosecond optical sampling,” IEEE J. Quantum Electron. 16(8), 870–874 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. J. Veselka and S. K. Korotky, “Pulse Generation for Soliton Systems Using Lithium Niobate Modulators,” IEEE J. Sel. Top. Quantum Electron. 2(2), 300–310 (1996).
[CrossRef]

T. Nishitani, T. Konishi, and K. Itoh, “Resolution Improvement of All-Optical Analog-to-Digital Conversion Employing Self-frequency Shift and Self-Phase-Modulation-Induced Spectral Compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Oda and A. Maruta, “A Novel Quantization Scheme by Slicing Supercontinuum Spectrum for All-Optical Analog-to-Digital Conversion,” IEEE Photon. Technol. Lett. 17(2), 465–467 (2005).
[CrossRef]

J. H. Shin, S. Wu, and N. Dagli, “35 GHz Bandwidth, 5 V-cm Drive Voltage, Bulk GaAs Substrate Removed Electro Optic Modulators,” IEEE Photon. Technol. Lett. 19(18), 1362–1364 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

F. Coppinger, A. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[CrossRef]

N. Dagli, “Wide Bandwidth Lasers and Modulators for RF Photonics,” IEEE Trans. Microw. Theory Tech. 47(7), 1151–1171 (1999).
[CrossRef]

K. M. Noguchi and H. Miyazawa, “Design of Ultra Broad Band LiNbO3 Optical Modulators with Ridge Structure,” IEEE Trans. Microw. Theory Tech. MTT-43, 2203–2207 (1995).

J. Lightwave Technol. (1)

Opt. Commun. (1)

R. Pant, C. Xiong, S. Madden, B. L. Davies, and B. J. Eggleton, “Investigation of all-optical analog-to-digital quantization using a chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun. 283(10), 2258–2262 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

B. Shoop, Photonic analog-to-digital conversion, (Springer-Verlag, 2001).

C. Sarantos and N. Dagli, “An Unbalanced MZM based Photonic Analog-to-Digital Converter,” Proceedings of IEEE/LEOS 2007 Annual Meeting, pp. 110-111, 2007.

G. Agrawal, Fiber Optic Communications Systems, Section 4.6.1, (Wiley, 1997).

D. J. Bachmann, N. Dagli, J. Calusdian, P. E. Pace, and J. P. Powers, Optical Pulse Train Generation Using Modulator Cascades,” Proceedings of IEEE/LEOS 2008 Annual Meeting, Paper TuF-4, pp. 190–191, Newport Beach, CA, November 9–13, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the proposed ADC. CW sources are multiplexed and fed into an unbalanced MZM, where an analog input voltage modulates the spectral channels simultaneously. The channels are then demultiplexed, temporally sampled and thresholded. The combined binary outputs of the thresholded channels form a digital representation of the applied voltage.

Fig. 2
Fig. 2

Transfer function of the unbalanced MZ modulator at different wavelengths as a function of normalized voltage. The thermometer-coded values at the top result from thresholding each channel at half the maximum power.

Fig. 3
Fig. 3

(a) Schematic illustration of the pulses of certain wavelength before the receiver, (b) received pulses of a digital communication link having the same detection levels as the proposed ADC, (c) expanded unbalanced MZM transfer function around Pth for three different wavelengths.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P o u t P max = cos 2 ( π V s 2 V π + π λ n Δ L )
b = 1 + log 2 ( N λ )
V F S Δ V min = 2 b       V π Δ V min = 2 b 1       b = log 2 [ V π Δ V min ] + 1
δ e x = ( P 1 + P 0 ) / ( P 1 P 0 )
δ e x = | cos 2 ( π 2 V 0 V π + π 2 1 2 b 1 ) + cos 2 ( π 2 V 0 V π ) cos 2 ( π 2 V 0 V π + π 2 1 2 b 1 ) cos 2 ( π 2 V 0 V π ) |
Δ L = c ( 2 m + 1 ) / ( 2 n N λ Δ ν )

Metrics