Abstract

A new submicron thin cell (STC) filled with Rb and neon gas is developed and comparison of resonant absorption with STC containing pure Rb is provided. The effect of collapse and revival of Dicke-type narrowing is still observable for the thickness L = λ/2 and L = λ, where λ is a resonant laser wavelength 794 nm (D1 line). For an ordinary Rb cm-size cell with addition of buffer gas, the velocity selective optical pumping/saturation (VSOP) resonances in saturated absorption spectra are fully suppressed if neon pressure > 0.5 Torr. A spectacular difference is that for L = λ, VSOP resonances are still observable even when neon pressure is ≥ 6 Torr. Narrow fluorescence spectra at L = λ/2 allow one to realize online buffer gas pressure monitoring. A good agreement with theoretical model is observed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
    [CrossRef]
  2. D. Sarkisyan, and A. Papoyan, “Optical processes in micro- and nanometric thin cells containing atomic vapor,” in New Trends in Quant. Coher. and Nonl. Opt., R. Drampyan ed. (Nova Sc. Publ., 2009).
  3. G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapour cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
    [CrossRef]
  4. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
    [CrossRef]
  5. G. Nikogosyan, D. Sarkisyan, and Yu. Malakyan, “Absorption of resonance radiation and fluorescence of an atomic gas with thickness of the order of a wavelength,” J. Opt. Technol. 71, 602–607 (2004).
    [CrossRef]
  6. D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
    [CrossRef]
  7. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
    [CrossRef]
  8. S. Cartaleva, S. Saltier, A. Sargsyan, D. Sarkisyan, D. Slavov, P. Todorov, and K. Vaseva, “Sub-Doppler spectroscopy of cesium vapor layers with nanometric and micrometric thickness,” J. Opt. Soc. Am. B 26, 1999–2006 (2009).
    [CrossRef]
  9. T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
    [CrossRef]
  10. S. Stenholm, Foundations of Laser Spectroscopy (New York: Wiley, 1983).
  11. J. H. Eberly, “Atomic Relaxation in the Presence of Intense Partially Coherent Radiation Fields,” Phys. Rev. Lett. 37, 1387–1390 (1976).
    [CrossRef]
  12. G. S. Agarwal, “Exact Solution for the Influence of Laser Temporal Fluctuations on Resonance Fluorescence,” Phys. Rev. Lett. 37, 1383–1386 (1976).
    [CrossRef]
  13. G. S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields,” Phys. Rev. A 18, 1490–1506 (1978).
    [CrossRef]
  14. V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
    [CrossRef]
  15. A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).
  16. T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
    [CrossRef] [PubMed]
  17. M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
    [CrossRef]

2009 (1)

2008 (1)

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

2007 (1)

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

2005 (1)

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

2004 (3)

V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

G. Nikogosyan, D. Sarkisyan, and Yu. Malakyan, “Absorption of resonance radiation and fluorescence of an atomic gas with thickness of the order of a wavelength,” J. Opt. Technol. 71, 602–607 (2004).
[CrossRef]

2003 (2)

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapour cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
[CrossRef]

2001 (1)

D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
[CrossRef]

1997 (1)

M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
[CrossRef]

1989 (1)

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

1978 (1)

G. S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields,” Phys. Rev. A 18, 1490–1506 (1978).
[CrossRef]

1976 (2)

J. H. Eberly, “Atomic Relaxation in the Presence of Intense Partially Coherent Radiation Fields,” Phys. Rev. Lett. 37, 1387–1390 (1976).
[CrossRef]

G. S. Agarwal, “Exact Solution for the Influence of Laser Temporal Fluctuations on Resonance Fluorescence,” Phys. Rev. Lett. 37, 1383–1386 (1976).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields,” Phys. Rev. A 18, 1490–1506 (1978).
[CrossRef]

G. S. Agarwal, “Exact Solution for the Influence of Laser Temporal Fluctuations on Resonance Fluorescence,” Phys. Rev. Lett. 37, 1383–1386 (1976).
[CrossRef]

Andreeva, C.

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

Babushkin, V.

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

Badalyan, A.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

Bloch, D.

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapour cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
[CrossRef]

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
[CrossRef]

Cartaleva, S.

S. Cartaleva, S. Saltier, A. Sargsyan, D. Sarkisyan, D. Slavov, P. Todorov, and K. Vaseva, “Sub-Doppler spectroscopy of cesium vapor layers with nanometric and micrometric thickness,” J. Opt. Soc. Am. B 26, 1999–2006 (2009).
[CrossRef]

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

Chaltykyan, V.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
[CrossRef]

Ducloy, M.

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapour cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
[CrossRef]

D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
[CrossRef]

Dutier, G.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapour cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
[CrossRef]

Eberly, J. H.

J. H. Eberly, “Atomic Relaxation in the Presence of Intense Partially Coherent Radiation Fields,” Phys. Rev. Lett. 37, 1387–1390 (1976).
[CrossRef]

Fujii, Y.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

Hering, P.

M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
[CrossRef]

Kitano, M.

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

Kompa, K. L.

M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
[CrossRef]

Lezama, A.

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

Malakyan, Yu.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

G. Nikogosyan, D. Sarkisyan, and Yu. Malakyan, “Absorption of resonance radiation and fluorescence of an atomic gas with thickness of the order of a wavelength,” J. Opt. Technol. 71, 602–607 (2004).
[CrossRef]

Mitsui, T.

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

Motzkus, M.

M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
[CrossRef]

Nersisyan, A.

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

Nikogosyan, G.

Ozawa, M.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

Papoyan, A.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
[CrossRef]

Petrov, L.

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

Pichler, G.

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
[CrossRef]

Saltiel, S.

G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, “Revisiting optical spectroscopy in a thin vapour cell: mixing of reflection and transmission as a Fabry-Perot microcavity effect,” J. Opt. Soc. Am. B 20, 793–800 (2003).
[CrossRef]

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

Saltiel, S. M.

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

Saltier, S.

Sargsyan, A.

Sarkisyan, A.

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

Sarkisyan, D.

S. Cartaleva, S. Saltier, A. Sargsyan, D. Sarkisyan, D. Slavov, P. Todorov, and K. Vaseva, “Sub-Doppler spectroscopy of cesium vapor layers with nanometric and micrometric thickness,” J. Opt. Soc. Am. B 26, 1999–2006 (2009).
[CrossRef]

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

G. Nikogosyan, D. Sarkisyan, and Yu. Malakyan, “Absorption of resonance radiation and fluorescence of an atomic gas with thickness of the order of a wavelength,” J. Opt. Technol. 71, 602–607 (2004).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
[CrossRef]

Shmavonyan, S.

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
[CrossRef]

Slavov, D.

Sugiyama, K.

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

Tanaka, T.

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

Todorov, P.

Varzhapetyan, T.

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

Vaseva, K.

Vdovic, S.

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

Yabuzaki, T.

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

Yarovitski, A.

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

Europhys. Lett. (1)

G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003).
[CrossRef]

J. Chem. Phys. (1)

M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, “Comparison of Na(4p)+H2 and Na(3p)+H2 reactive systems studied by resonance CARS and DFWM methods,” J. Chem. Phys. 106, 9507 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Opt. Technol. (1)

J. Phys. At. Mol. Opt. Phys. (2)

T. Varzhapetyan, A. Nersisyan, V. Babushkin, D. Sarkisyan, S. Vdović, and G. Pichler, “Study of atomic transition self-broadening and shift with the help of a nano-cell,” J. Phys. At. Mol. Opt. Phys. 41, 185004 (2008).
[CrossRef]

V. Chaltykyan, Yu. Malakyan, S. Shmavonyan, and A. Papoyan, “Resonant laser-induced formation of caesium hydride molecules in a room temperature vapour cell: experimental results and rate equation calculations,” J. Phys. At. Mol. Opt. Phys. 37, 3735–3743 (2004).
[CrossRef]

Opt. Commun. (1)

D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “A Sub-Doppler Spectroscopy by Sub-Micron Thin Cs-Vapor Layer,” Opt. Commun. 200, 201–208 (2001).
[CrossRef]

Phys. Rev. A (3)

D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an Extremely Thin Vapour Cell: Comparing the Cell Length Dependence in Fluorescence and in Absorption Techniques,” Phys. Rev. A 69, 065802 (2004).
[CrossRef]

C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007).
[CrossRef]

G. S. Agarwal, “Quantum statistical theory of optical-resonance phenomena in fluctuating laser fields,” Phys. Rev. A 18, 1490–1506 (1978).
[CrossRef]

Phys. Rev. Lett. (3)

T. Tanaka, T. Mitsui, K. Sugiyama, M. Kitano, and T. Yabuzaki, “Shapes of laser-produced CsH particles,” Phys. Rev. Lett. 63, 1390 (1989).
[CrossRef] [PubMed]

J. H. Eberly, “Atomic Relaxation in the Presence of Intense Partially Coherent Radiation Fields,” Phys. Rev. Lett. 37, 1387–1390 (1976).
[CrossRef]

G. S. Agarwal, “Exact Solution for the Influence of Laser Temporal Fluctuations on Resonance Fluorescence,” Phys. Rev. Lett. 37, 1383–1386 (1976).
[CrossRef]

Prog. Nucl. Phys. (1)

A. Badalyan, V. Chaltykyan, Y. Fujii, Yu. Malakyan, M. Ozawa, A. Papoyan, and S. Shmavonyan, “Studies of laser induced cesium and rubidium hydride formation in vapor cells and their application for isotope separation,” Prog. Nucl. Phys. 47, 389–396 (2005).

Other (2)

S. Stenholm, Foundations of Laser Spectroscopy (New York: Wiley, 1983).

D. Sarkisyan, and A. Papoyan, “Optical processes in micro- and nanometric thin cells containing atomic vapor,” in New Trends in Quant. Coher. and Nonl. Opt., R. Drampyan ed. (Nova Sc. Publ., 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Multi-region cell consisting of 2 interconnected regions: STC cell (the upper part) with wedged thickness in the range of 0.1 – 4 µm, and 1 cm-long sapphire cell (the lower part). MRC is filled with Rb with addition of neon at 6 Torr or 20 Torr pressure; (b) photograph of the multi-region cell.

Fig. 2.
Fig. 2.

Sketch of the experimental setup. The laser beam is produced by ECDL; Faraday isolator (FI) is used to avoid optical feedback. 1- photodetectors, 2 - MRC (only STC is shown); oscilloscope is Tektronix TDS2014B; the upper branching is to form a reference SA spectrum.

Fig. 3.
Fig. 3.

Atomic hyperfine transitions of 85Rb, 87Rb D1 line.

Fig. 4.
Fig. 4.

Experimental transmission spectra for L = λ/2 and L = λ. (a) STC with pure Rb, DCN and its collapse is well seen; (b) STC with Rb + 6 Torr Ne, DCN and its collapse is still well seen; (c) STC with Rb + 20 Torr Ne, DCN and its collapse is yet seen, though less pronounced compared with (a), (b). For L = λ/2 buffer gas admission broadens and slightly reduces the absorption; for L = λ case also laser intensity influences the absorption value (see the text).

Fig. 5.
Fig. 5.

Calculated spectra for cases presented in Fig. 4. 85Rb, D1 line only for Fg = 3 → Fe = 2,3 transitions. (a) pure Rb, L = λ/2, and λ, Ω L ∼ 0.04 λ; (b) Rb + 6 Torr Ne for L = λ/2 and λ, Ω L ∼ 0.4 λ (c) Rb + 20 Torr Ne, for L = λ/2 and λ, Ω L = 0.8 λ, VT = 300 m/s, pressure broadening 7 MHz/Torr.

Fig. 6.
Fig. 6.

1- well-known SA resonances for 3 cm-long cell (pure 85Rb, D1 line), CO is crossover resonance; 2 - SA spectrum for 1 cm-long cell filled with Rb + 6 Torr Ne showing absence of VSOP resonances. The spectra are shifted vertically for a reader convenience.

Fig. 7.
Fig. 7.

Rb D1 line transmission spectra for L = λ. 1 - pure Rb STC, VSOP resonances are well pronounced; 2 - Rb + 6 Torr Ne STC, VSOP resonances are broadened; 3 - Rb + 20 Torr Ne STC, VSOP resonances are washed out. The spectra are shifted vertically for a reader convenience.

Fig. 8.
Fig. 8.

(a - experiment, b - theory). 85Rb D1 line fluorescence spectra for Fg = 3 → Fe = 2,3 transitions in STC with L = λ/2 for 3 cases: curves 1 – STC with pure Rb: linewidth 76 MHz (a) and 72 MHz (b); curves 2 – STC with Rb + 6 Torr Ne (grey curve): 145 MHz (a) and 137 MHz(b); curves 3 - Rb + 20 Torr Ne: 230 MHz (a) and 240 MHz (b). ΩL = 0.4 γ, VT = 300 m/s, pressure broadening 7 MHz/Torr.

Fig. 9.
Fig. 9.

The three-level scheme around the D1 line line of 85Rb.

Fig. 10.
Fig. 10.

Dependence (theory) of the fluorescence linewidth and the amplitudes for L = λ/2 as a function of the neon pressure for Rb D1 line (Fg = 3→Fe = 2,3), Ω = 0.4 γ, VT =300m/s.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ ̇ = 1 i h ¯ [ H ̂ 0 + V ̂ , ρ ] + relaxation terms ,
ρ ̇ 11 = 2 Im ( Ω 1 * ρ 21 ) 2 Im ( Ω 2 * ρ 31 ) + γ 21 ρ 22 + γ 31 ρ 33 ,
ρ ̇ 22 = 2 Im ( Ω 1 * ρ 21 ) 2 Γ ρ 22 ,
ρ ̇ 33 = 2 Im ( Ω 2 * ρ 31 ) 2 Γ ρ 33 ,
ρ ̇ 21 = i Ω 1 ( ρ 11 ρ 22 ) i Ω 2 ρ 32 * ( Γ + i Δ 1 ) ρ 21 ,
ρ ̇ 31 = i Ω 2 ( ρ 11 ρ 33 ) i Ω 1 ρ 32 ( Γ + i Δ 2 ) ρ 31 ,
ρ ̇ 32 = i Ω 2 ρ 21 * i Ω 1 * ρ 31 ( 2 Γ + i δ ) ρ 32 ,

Metrics