Abstract

Periodic gratings and photonic bandgap structures have been studied for decades in optical technologies. The translational invariance of periodic gratings gives rise to well-known angular and frequency filtering of the incident radiation resulting in well-defined scattered colors in response to broadband illumination. Here, we demonstrate the formation of highly complex structural color patterns, or colorimetric fingerprints, in two-dimensional (2D) deterministic aperiodic gratings using dark field scattering microscopy. The origin of colorimetric fingerprints is explained by rigorous full-wave numerical simulations based on the generalized Mie theory. We show that unlike periodic gratings, aperiodic nanopatterned surfaces feature a broadband frequency response with wide angular intensity distributions governed by the distinctive Fourier properties of the aperiodic structures. Finally, we will discuss a range of potential applications of colorimetric fingerprints for optical sensing and spectroscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton Univ Pr, 2008).
  3. A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. Fr. 31(6), 1–235 (2006).
    [CrossRef]
  4. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [CrossRef]
  5. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
    [CrossRef]
  6. S. V. Boriskina, A. Gopinath, and L. Dal Negro, “Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures,” Opt. Express 16(23), 18813–18826 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-18813 .
    [CrossRef]
  7. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
    [CrossRef]
  8. X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001).
    [CrossRef]
  9. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
    [CrossRef] [PubMed]
  10. L. Moretti and V. Mocella, “Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence,” Opt. Express 15(23), 15314–15323 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15314 .
    [CrossRef] [PubMed]
  11. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
    [CrossRef] [PubMed]
  12. M. E. Zoorob and G. Flinn, “Photonic quasicrystals boost LED emission characteristics,” LEDs Magazine Aug., 21–24 (2006).
  13. A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
    [CrossRef]
  14. S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009).
    [CrossRef]
  15. R. Lifshitz, “Quasicrystals: A matter of definition,” Found. Phys. 33(12), 1703–1711 (2003).
    [CrossRef]
  16. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
    [CrossRef] [PubMed]
  17. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
    [CrossRef] [PubMed]
  18. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
    [CrossRef]
  19. E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69(2), 397–441 (2006).
    [CrossRef]
  20. J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
    [CrossRef] [PubMed]
  21. M. R. Schroeder, Number theory in science and communication (Springer, 1985).
  22. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13499 .
    [CrossRef] [PubMed]
  23. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994).
    [CrossRef]
  24. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
    [CrossRef] [PubMed]
  25. V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
    [CrossRef]
  26. H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002).
    [CrossRef] [PubMed]
  27. E. M. Barber, Aperiodic structures in condensed matter: fundamentals and applications” (CRC Press, 2009)
  28. S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
    [PubMed]

2009 (3)

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009).
[CrossRef]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

2008 (3)

2007 (2)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

L. Moretti and V. Mocella, “Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence,” Opt. Express 15(23), 15314–15323 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15314 .
[CrossRef] [PubMed]

2006 (3)

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. Fr. 31(6), 1–235 (2006).
[CrossRef]

M. E. Zoorob and G. Flinn, “Photonic quasicrystals boost LED emission characteristics,” LEDs Magazine Aug., 21–24 (2006).

E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69(2), 397–441 (2006).
[CrossRef]

2005 (1)

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Lifshitz, “Quasicrystals: A matter of definition,” Found. Phys. 33(12), 1703–1711 (2003).
[CrossRef]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

2002 (2)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
[CrossRef]

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002).
[CrossRef] [PubMed]

2001 (2)

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001).
[CrossRef]

2000 (1)

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

1998 (1)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

1994 (1)

1993 (1)

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Abram, R. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Amsden, J. J.

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Assender, H.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002).
[CrossRef] [PubMed]

Assender, H. E.

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

Bliznyuk, V.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002).
[CrossRef] [PubMed]

Bliznyuk, V. N.

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

Boriskina, S. V.

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

S. V. Boriskina, A. Gopinath, and L. Dal Negro, “Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures,” Opt. Express 16(23), 18813–18826 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-18813 .
[CrossRef]

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Brand, S.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Briggs, G. A. D.

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

Burlakov, V. M.

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

Campbell, K.

Capolino, F.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Chan, C. T.

X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001).
[CrossRef]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Colocci, M.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Cunningham, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
[CrossRef]

Cunningham, B. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Dal Negro, L.

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

S. V. Boriskina, A. Gopinath, and L. Dal Negro, “Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures,” Opt. Express 16(23), 18813–18826 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-18813 .
[CrossRef]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

David, A.

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. Fr. 31(6), 1–235 (2006).
[CrossRef]

Della Villa, A.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[CrossRef] [PubMed]

Enoch, S.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Fainman, Y.

Feng, N.-N.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Flinn, G.

M. E. Zoorob and G. Flinn, “Photonic quasicrystals boost LED emission characteristics,” LEDs Magazine Aug., 21–24 (2006).

Gaburro, Z.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Galdi, V.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Gopinath, A.

S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009).
[CrossRef]

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

S. V. Boriskina, A. Gopinath, and L. Dal Negro, “Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures,” Opt. Express 16(23), 18813–18826 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-18813 .
[CrossRef]

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Groisman, A.

Höddelius, P. L.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Johnson, P.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Kaliteevski, M. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Kaplan, D. L.

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Krauss, T. F.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Lagendijk, A.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Lee, S. Y. K.

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Levy, U.

Li, P.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
[CrossRef]

Lifshitz, R.

R. Lifshitz, “Quasicrystals: A matter of definition,” Found. Phys. 33(12), 1703–1711 (2003).
[CrossRef]

Lin, B.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
[CrossRef]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

Maciá, E.

E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69(2), 397–441 (2006).
[CrossRef]

Mackowski, D. W.

Magnusson, K. E.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Micco, A.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

Millar, P.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Mitropoulos, A.

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Mocella, V.

Moretti, L.

Negro, L. D.

S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009).
[CrossRef]

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[CrossRef] [PubMed]

Omenetto, F. G.

J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express 17(23), 21271–21279 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-21271 .
[CrossRef] [PubMed]

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Oton, C. J.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Pang, L.

Pavesi, L.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Pepper, J.

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
[CrossRef]

Perry, H.

Petersen, N. O.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Pierro, V.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Porfyrakis, K.

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002).
[CrossRef] [PubMed]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Righini, R.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Rue, R. D. L.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Seger, O.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[CrossRef] [PubMed]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[CrossRef] [PubMed]

Tayeb, G.

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Tsukahara, Y.

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

Wiersma, D. S.

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Wiseman, P. W.

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Zamek, S.

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Zhang, X.

X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001).
[CrossRef]

Zhang, Z.-Q.

X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001).
[CrossRef]

Zoorob, M. E.

M. E. Zoorob and G. Flinn, “Photonic quasicrystals boost LED emission characteristics,” LEDs Magazine Aug., 21–24 (2006).

Ann. Phys. Fr. (1)

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. Fr. 31(6), 1–235 (2006).
[CrossRef]

Biophys. J. (1)

N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J. 65(3), 1135–1146 (1993).
[CrossRef] [PubMed]

Found. Phys. (1)

R. Lifshitz, “Quasicrystals: A matter of definition,” Found. Phys. 33(12), 1703–1711 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Macromol. Symp. (1)

V. N. Bliznyuk, V. M. Burlakov, H. E. Assender, G. A. D. Briggs, and Y. Tsukahara, “Surface structure of amorphous PMMA from SPM: auto-correlation function and fractal analysis,” Macromol. Symp. 167(1), 89–100 (2001).
[CrossRef]

Nano Lett. (1)

A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett. 8(8), 2423–2431 (2008).
[CrossRef] [PubMed]

Nanotech. (1)

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. D. L. Rue, and P. Millar, “Two-dimensional Penrose-tiled photonic quasicrystals,” Nanotech. 11(4), 274–280 (2000).
[CrossRef]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Opt. Express (4)

Phys. E (1)

S. V. Boriskina, A. Gopinath, and L. D. Negro, “Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures,” Phys. E 41(6), 1102–1106 (2009).
[CrossRef]

Phys. Rev. B (2)

A. Micco, V. Galdi, F. Capolino, A. Della Villa, V. Pierro, S. Enoch, and G. Tayeb, “Directive emission from defect-free dodecagonal photonic quasicrystals: A leaky wave characterization,” Phys. Rev. B 79(7), 075110–075116 (2009).
[CrossRef]

X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals,” Phys. Rev. B 63(8), 081105 (2001).
[CrossRef]

Phys. Rev. Lett. (5)

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[CrossRef] [PubMed]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80(5), 956–959 (1998).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice,” Phys. Rev. Lett. 92(12), 123906 (2004).
[CrossRef] [PubMed]

L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90(5), 055501 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Y. K. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropoulos, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. (to be published).
[PubMed]

Rep. Prog. Phys. (1)

E. Maciá, “The role of aperiodic order in science and technology,” Rep. Prog. Phys. 69(2), 397–441 (2006).
[CrossRef]

Science (1)

H. Assender, V. Bliznyuk, and K. Porfyrakis, “How surface topography relates to materials’ properties,” Science 297(5583), 973–976 (2002).
[CrossRef] [PubMed]

Sens. Actuators (1)

B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators 81(2-3), 316–328 (2002).
[CrossRef]

Other (4)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton Univ Pr, 2008).

M. E. Zoorob and G. Flinn, “Photonic quasicrystals boost LED emission characteristics,” LEDs Magazine Aug., 21–24 (2006).

E. M. Barber, Aperiodic structures in condensed matter: fundamentals and applications” (CRC Press, 2009)

M. R. Schroeder, Number theory in science and communication (Springer, 1985).

Supplementary Material (3)

» Media 1: AVI (2684 KB)     
» Media 2: AVI (2684 KB)     
» Media 3: AVI (2684 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

2D aperiodic lattices arranged according to the Gaussian prime (a) and Rudin-Shapiro (d) inflation rules [21] and their corresponding 2D Fourier transforms (b,e). Simulated far-field multi-color scattered intensity maps of the Gaussian prime (c) and Rudin-Shapiro (f) arrays of 200nm-diameter nano-spheres with the refractive index of 1.5 and minimum center-to-center separations of 300 nm (c) and 400 nm (f). The RGB images shown in (c) and (f) are obtained by overlapping the forward-scattered field intensity distributions corresponding to the arrays illumination by a plane wave at three wavelengths in the red, green and blue parts of the optical spectrum: λB = 470 nm (blue), λG = 520 nm (green), λR = 630 nm (red).

Fig. 2
Fig. 2

Colorimetric signatures of 2D periodic gratings. (a) Scanning electron microscopy (SEM) images of 2D periodic arrays of 100-radius and 70nm-deep cylindrical indentations nano-patterned on a quartz substrate. The center-to-center lattice constants of different arrays are: 500 nm (top left), 600 nm (top right), 700 nm (bottom right), and 800 nm (bottom left). (b) A schematic of the dark field scattering setup used in the measurements. (c) Images of periodic arrays illuminated at a grazing incidence with white light from a single fiber. (d) Wavelength versus the scattering angle for the first four diffractive orders of the periodic grating with 400 nm period.

Fig. 3
Fig. 3

SEM images and colorimetric fingerprints of 2D aperiodic gratings. Nanopatterned aperiodic arrays of 100-radius and 70nm-deep cylindrical indentations on a quartz substrate. (a) Thue-Morse lattice (nearest center-to-center separation d = 400 nm), (c) Rudin-Shapiro lattice (d = 400 nm), (e) Penrose lattice (d = 400 nm), and (g) Gaussian prime lattice (d = 300 nm). (b,d,g,h) Dark-field microscopy images of corresponding aperiodic gratings.

Fig. 4
Fig. 4

Experimentally measured colorimetric fingerprints of (a) Gaussian Prime, (b) Thue-Morse, (c) Rudin-Shapiro and (d) Penrose aperiodic arrays with varied minimum interparticle separations (indicated in the insets).

Fig. 5
Fig. 5

Experimentally measured colorimetric fingerprints of Rudin-Shapiro arrays with 400nm center-to-center nearest separation on quartz substrates with array nanoelements made of different materials: (a) 100nm-deep air indentations, (b) 80nm-high silicon nitride disks, and (c) 30nm-high gold disks under white light illumination and dark-field scattering microscopy.

Fig. 6
Fig. 6

Angular profiles of light scattered by periodic and aperiodic gratings. Spatial field distributions (side view) of the light scattered by a periodic array of 100nm-radius nanospheres with refractive index n = 1.5 and 400 nm grating period illuminated by a plane wave at θinc = 75° and (a) λ = 470 nm (blue), (b) λ = 520 nm (green), (c) λ = 630 nm (red). The direction of the incident field is indicated with a white arrow (see also Media 1). (d) Multi-wavelength scattered field distribution (top view) at 100 μm above the periodic grating within the collection cone ( ± 30°) of the microscope objective with N.A. = 0.5. (e-l) Same as (a-d) but for a Gaussian prime array with 300 nm nearest center-to-center separation and a Rudin-Shapiro array with 400 nm nearest center-to-center separation, respectively (see also Media 2 and Media 3).

Fig. 7
Fig. 7

Colorimetric fingerprint formation in the plane of aperiodic arrays. Calculated spatial field distributions (top view) of the scattered light in the plane of a Gaussian prime array of nanospheres with n = 1.5 and 300 nm nearest center-to-center separation at (a) λ = 470 nm (blue), (b) λ = 520 nm (green), (c) λ = 630 nm (red), and a combined RGB image.

Fig. 8
Fig. 8

(a) Calculated spatial field distributions (top view) of the scattered light in the plane of a Gaussian prime array of nanospheres with n = 1.5 and 300 nm minimum interparticle separation at λ = 530 nm. (b) Same in the presence of a 10-nm thick index-matching layer covering the particles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = Λ m ( n 1 sin θ i n c + n 2 sin θ s c ) ,      m = 0 , ± 1 , ± 2...

Metrics