Abstract

The polarization properties of light emitting diodes with integrated wire grid polarizers are investigated. Rigorous coupled wave analysis and Monte-Carlo ray tracing are used for modeling the gratings and the entire LED structure respectively. We show that it is more advantageous to place the polarizer onto the LED encapsulation rather than onto the die. With the proposed arrangement the average extinction ratio is 2.37 in the uncollimated case and 76.86 in the collimated case, while the light extraction efficiency is significantly higher than that of the LED + external polarizer combination. The achieved results compare favorably to other polarized LED solutions proposed in the literature.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).
  2. G. B. Stringfellow, and M. G. Craford, “High Brightness Light Emitting Diodes,” in Semiconductors and Semimetals, R. K. Wiliardson and E. R. Weber eds. (Academic Press, 1997), Vol. 48.
  3. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
    [CrossRef]
  4. J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
    [CrossRef]
  5. R. Otte, L. P. de Joung, and A. H. M. van Roermund, Low-Power Wireless Infrared Communications (Kluwer Academic Publishers, 1999).
  6. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (John Wiley, Canada, 1999).
  7. M. F. Schubert, A. Noemaun, S. Chhajed, J. K. Kim, E. F. Schubert, and Ch. Sone, “Encapsulation shape with non-rotational symmetry designed for extraction of polarized light from unpolarized sources,” Opt. Express 15(16), 10452–10457 (2007).
    [CrossRef] [PubMed]
  8. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Linearly polarized emission from GaInN lightemitting diodes with polarization-enhancing reflector,” Opt. Express 15(18), 11213–11218 (2007).
    [CrossRef] [PubMed]
  9. J. A. Wheatley, C. A. Leatherdale, and A. J. Ouderkirk, “Polarized LED,” International Patent, WO 2006/052328 A1 (2006).
  10. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [CrossRef] [PubMed]
  11. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007).
    [CrossRef] [PubMed]
  12. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
    [CrossRef]
  13. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [CrossRef]
  14. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  15. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  16. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
    [CrossRef]
  17. N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
    [CrossRef]
  18. D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
    [CrossRef]
  19. T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15(11), 6670–6676 (2007).
    [CrossRef] [PubMed]
  20. Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
    [CrossRef]
  21. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
    [CrossRef] [PubMed]

2009

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

2008

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
[CrossRef]

D. Kim and E. Sim, “Segmented coupled-wave analysis of a curved wire-grid polarizer,” J. Opt. Soc. Am. A 25(3), 558–565 (2008).
[CrossRef]

2007

2006

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[CrossRef] [PubMed]

2005

J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
[CrossRef]

2003

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
[CrossRef]

1999

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

1996

1995

1994

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Baba, J. S.

J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
[CrossRef]

Chang, J.-H.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
[CrossRef]

Chen, E. I.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Chen, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Chen, Y.-P.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
[CrossRef]

Chhajed, S.

Chien, W.-T.

Cho, J.

Chui, H. C.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Craford, M. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Cui, B.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

David, C.

DeFevere, D. C.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Ekinci, Y.

Fletcher, R. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Gao, K.-F.

Gardner, N. F.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Gaylord, T. K.

Ge, H.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Gleason, S. S.

J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
[CrossRef]

Goddard, J. S.

J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
[CrossRef]

Grann, E. B.

Gu, Y.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Huang, J.-W.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Jacques, S. L.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
[CrossRef]

Kim, D.

Kim, J. K.

Kish, F. A.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Kocot, C. P.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Krames, M. R.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Kuo, C. P.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Lee, K.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
[CrossRef]

Lee, T.-X.

Lee, Y.-P.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
[CrossRef]

Li, L.

Li, Z.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Lu, Y. F.

Moharam, M. G.

Moll, N.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Noemaun, A.

Osentowski, T. D.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Park, K. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Paulus, J. M.

J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
[CrossRef]

Peanasky, M. J.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Pommet, D. A.

Prahl, S. A.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
[CrossRef]

Ramella-Roman, J. C.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
[CrossRef]

Robbins, V. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Schubert, E. F.

Schubert, M. F.

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Sigg, H.

Sim, E.

Solak, H. H.

Sone, Ch.

Steigerwald, D. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Steranka, F. M.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Stockman, S. A.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Sun, C.-C.

Tan, T. S.

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

Vanderwater, D. A.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Wang, L.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Wang, L. A.

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
[CrossRef]

Williams, R. S.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Wu, W.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Xia, Q.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Yang, Z. Y.

Yu, J. G.

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

Yuan, Ch.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint litography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett. 64(21), 2839–2841 (1994).
[CrossRef]

N. F. Gardner, H. C. Chui, E. I. Chen, M. R. Krames, J.-W. Huang, F. A. Kish, S. A. Stockman, C. P. Kocot, T. S. Tan, and N. Moll, “1.4x efficiency improvement in transparent-substrate (AlxGa1-x)0.5In0.5P light-emitting diodes with thin (≤2000 Å) active regions,” Appl. Phys. Lett. 74(15), 2230–2232 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

Y.-P. Chen, Y.-P. Lee, J.-H. Chang, and L. A. Wang, “Fabrication of concave gratings by curved surface UV-nanoimprint lithography,” J. Vac. Sci. Technol. B 26(5), 1690–1695 (2008).
[CrossRef]

Nano Lett.

Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, Ch. Yuan, Y. Chen, B. Cui, and R. S. Williams, “Hybrid nanoimprint-soft lithography with sub-15 nm resolution,” Nano Lett. 9(6), 2306–2310 (2009).
[CrossRef] [PubMed]

Opt. Express

Proc. SPIE

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized Light Imaging with a Handheld Camera,” Proc. SPIE 5068, 284–293 (2003).
[CrossRef]

J. S. Baba, S. S. Gleason, J. S. Goddard, and J. M. Paulus, “Application of Polarization for Optical Motion-Registered SPECT Functional Imaging of Tumors in Mice,” Proc. SPIE 5702, 97–103 (2005).
[CrossRef]

Other

R. Otte, L. P. de Joung, and A. H. M. van Roermund, Low-Power Wireless Infrared Communications (Kluwer Academic Publishers, 1999).

P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (John Wiley, Canada, 1999).

J. A. Wheatley, C. A. Leatherdale, and A. J. Ouderkirk, “Polarized LED,” International Patent, WO 2006/052328 A1 (2006).

E. F. Schubert, Light Emitting Diodes (Cambridge University Press, 2006).

G. B. Stringfellow, and M. G. Craford, “High Brightness Light Emitting Diodes,” in Semiconductors and Semimetals, R. K. Wiliardson and E. R. Weber eds. (Academic Press, 1997), Vol. 48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Extinction ratio and (b) average absorption for unpolarized incident wave. The WGP is placed onto the encapsulation (Grating on encapsulation: line + symbol) or onto the LED die (Grating on die: solid line).

Fig. 3
Fig. 3

(a) Schematics of the combination of the geometrical optical model with the diffraction optical model. (b) Schematic drawing of the simulation setup. D1 and D2 denotes the detectors, which detects the uncollimated and collimated waves respectively. L denotes a theoretical “perfect” collimating lens, and (P) denotes an optional polarizer for the LED + external polarizer configuration.

Fig. 2
Fig. 2

(a) Schematic diagram of the LED model with WGP placed onto all sides of the chip. (b) Schematic design of the WGP on the encapsulation LED model. The density of the lines doesn't correspond to the grating period, the lines mark only the direction of the grating lines.

Tables (1)

Tables Icon

Table 1 Optical output of the examined LED models.

Metrics