Abstract

We have fabricated spherical and cylindrical concave micro-mirrors in silicon with dimensions from 20 μm to 100 μm. The fabrication process involves standard photolithography followed by large area ion beam irradiation and electrochemical anodisation in a HF electrolyte. After thermal oxidation the silicon surface roughness is less than 2 nm. We also present a multilayer porous silicon distributed Bragg reflector fabricated on concave silicon surfaces which selectively reflect and focus a band of wavelengths from a parallel beam of incident white light. Development of such low roughness concave microstructures opens up new applications in areas such as silicon photonics and quantum information science.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Merenda, M. Grossenbacher, S. Jeney, L. Forró, and R. P. Salathé, “Three-dimensional force measurements in optical tweezers formed with high-NA micromirrors,” Opt. Lett. 34(7), 1063–1065 (2009).
    [CrossRef] [PubMed]
  2. F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
    [CrossRef] [PubMed]
  3. C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004).
    [CrossRef]
  4. Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000).
    [CrossRef]
  5. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
    [CrossRef]
  6. G. Q. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, “A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies,” Opt. Express 14(6), 2289–2299 (2006).
    [CrossRef] [PubMed]
  7. P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
    [CrossRef]
  8. S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994).
    [CrossRef] [PubMed]
  9. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
    [CrossRef] [PubMed]
  10. F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
    [CrossRef]
  11. D. C. Appleyard and M. J. Lang, “Active particle control through silicon using conventional optical trapping techniques,” Lab Chip 7(12), 1837–1840 (2007).
    [CrossRef] [PubMed]
  12. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [CrossRef] [PubMed]
  13. T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
    [CrossRef]
  14. M. Navarro, J. M. LopezVillegas, J. Samitier, J. R. Morante, J. Bausells, and A. Merlos, “Electrochemical etching of porous silicon sacrificial layers for micromachining applications,” in 7th Workshop on Micromachining, Micromechanics and Microsystems in Europe (MME 96, 1996), pp. 131–132.
  15. E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
    [CrossRef]
  16. E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
    [CrossRef]
  17. M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
    [CrossRef]
  18. D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008).
    [PubMed]
  19. Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
    [CrossRef]
  20. V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH 2002).
  21. G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997).
    [CrossRef]
  22. A. A. Busnaina, “An Experimental Study of Megasonic Cleaning of Silicon Wafers,” J. Electrochem. Soc. 142(8), 2812 (1995).
    [CrossRef]
  23. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef]
  24. L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
    [CrossRef]
  25. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
    [CrossRef]
  26. X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
    [CrossRef]
  27. D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008).
    [CrossRef]

2010 (1)

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

2009 (2)

2008 (2)

D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008).
[PubMed]

D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008).
[CrossRef]

2007 (2)

D. C. Appleyard and M. J. Lang, “Active particle control through silicon using conventional optical trapping techniques,” Lab Chip 7(12), 1837–1840 (2007).
[CrossRef] [PubMed]

F. Merenda, J. Rohner, J. M. Fournier, and R. P. Salathé, “Miniaturized high-NA focusing-mirror multiple optical tweezers,” Opt. Express 15(10), 6075–6086 (2007).
[CrossRef] [PubMed]

2006 (4)

G. Q. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, “A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies,” Opt. Express 14(6), 2289–2299 (2006).
[CrossRef] [PubMed]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

2005 (1)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

2004 (2)

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004).
[CrossRef]

2003 (1)

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

2001 (1)

2000 (1)

Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000).
[CrossRef]

1999 (1)

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[CrossRef]

1997 (1)

G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997).
[CrossRef]

1996 (1)

T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
[CrossRef]

1995 (2)

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
[CrossRef] [PubMed]

A. A. Busnaina, “An Experimental Study of Megasonic Cleaning of Silicon Wafers,” J. Electrochem. Soc. 142(8), 2812 (1995).
[CrossRef]

1994 (1)

S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994).
[CrossRef] [PubMed]

1993 (1)

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

1990 (1)

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[CrossRef]

Albero, J.

Aoki, Y.

Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000).
[CrossRef]

Appleyard, D. C.

D. C. Appleyard and M. J. Lang, “Active particle control through silicon using conventional optical trapping techniques,” Lab Chip 7(12), 1837–1840 (2007).
[CrossRef] [PubMed]

Azimi, S.

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

Barret, S.

G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997).
[CrossRef]

Baumgartel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[CrossRef]

Bell, T. E.

T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
[CrossRef]

Bettiol, A. A.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Bhongale, S.

Blackwood, D. J.

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Breese, M. B. H.

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008).
[PubMed]

D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008).
[CrossRef]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Busnaina, A. A.

A. A. Busnaina, “An Experimental Study of Megasonic Cleaning of Silicon Wafers,” J. Electrochem. Soc. 142(8), 2812 (1995).
[CrossRef]

Cerrina, F.

Champeaux, F.

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

Champeaux, F. J. T.

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

Chatterjee, S.

Cirac, J. I.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
[CrossRef] [PubMed]

Csepregi, L.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[CrossRef]

Cui, G. Q.

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

DeMunter, D.

T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
[CrossRef]

Domokos, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Folman, R.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Forró, L.

Fournier, J. M.

Fuh, V. L. S.

Gardiner, S. A.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
[CrossRef] [PubMed]

Gennissen, P. T. J.

T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
[CrossRef]

Gibbs, H. M.

Gomez, V.

Gorecki, C.

Grossenbacher, M.

Haase, A.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Hannigan, J. M.

Heuberger, A.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[CrossRef]

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Holland, M.

Horak, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Hsu, W. Y.

C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004).
[CrossRef]

Iga, K.

Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000).
[CrossRef]

Ikeda, M.

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Irene, E. A.

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[CrossRef]

Jeney, S.

Kadota, Y.

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Karlsson, A.

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Khitrova, G.

Kimerling, L. C.

Klappauf, B. G.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Kraft, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Kuhl, M.

T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
[CrossRef]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Lai, L.

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[CrossRef]

Lang, M. J.

D. C. Appleyard and M. J. Lang, “Active particle control through silicon using conventional optical trapping techniques,” Lab Chip 7(12), 1837–1840 (2007).
[CrossRef] [PubMed]

Lee, K. K.

Leng, Y. R.

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

Lérondel, G.

G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997).
[CrossRef]

Lim, D. R.

Lin, C. H.

C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004).
[CrossRef]

Liu, G. Y.

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

Liu, M. H.

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Loeckenhoff, R.

Machida, S.

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Mangaiyarkarasi, D.

D. Mangaiyarkarasi, O. Y. Sheng, M. B. H. Breese, V. L. S. Fuh, and E. T. Xioasong, “Fabrication of large-area patterned porous silicon distributed Bragg reflectors,” Opt. Express 16(17), 12757–12763 (2008).
[PubMed]

D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008).
[CrossRef]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

Matinaga, F. M.

G. Q. Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, “A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies,” Opt. Express 14(6), 2289–2299 (2006).
[CrossRef] [PubMed]

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Merenda, F.

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Morin, S. E.

S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994).
[CrossRef] [PubMed]

Mosor, S.

Mossberg, T. W.

S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994).
[CrossRef] [PubMed]

Nieradko, L.

Ottevaere, H.

Ow, Y. S.

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008).
[CrossRef]

Päivänranta, B.

Passilly, N.

Pellizzari, T.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
[CrossRef] [PubMed]

Pietarinen, J.

Qiu, X. J.

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

Raymer, M. G.

Rohner, J.

Romestain, R.

G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997).
[CrossRef]

Salathé, R. P.

Schmiedmayer, J.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Seidel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[CrossRef]

Sheng, O. Y.

Shimada, Y.

Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000).
[CrossRef]

Shin, J.

Sun, X. W.

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

Suzuki, T.

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Tan, X. W.

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

Tavernier, E. P.

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Teo, E. J.

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Thienpont, H.

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

Wang, Z.

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

Watt, F.

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

Wen, S. Y.

C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004).
[CrossRef]

Xioasong, E. T.

Xiong, Z. H.

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

Yamamoto, Y.

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

Yu, C. C.

S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994).
[CrossRef] [PubMed]

Zoller, P.

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
[CrossRef] [PubMed]

Adv. Mater. (1)

E. J. Teo, M. B. H. Breese, A. A. Bettiol, D. Mangaiyarkarasi, F. Champeaux, F. Watt, and D. J. Blackwood, “Multicolour Photoluminescence from Porous Silicon using Focused High-energy Helium Ions,” Adv. Mater. 18(1), 51–55 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

E. J. Teo, M. B. H. Breese, E. P. Tavernier, A. A. Bettiol, F. Watt, M. H. Liu, and D. J. Blackwood, “Three-dimensional microfabrication in bulk silicon using high-energy protons,” Appl. Phys. Lett. 84(16), 3202–3204 (2004).
[CrossRef]

F. M. Matinaga, A. Karlsson, S. Machida, Y. Yamamoto, T. Suzuki, Y. Kadota, and M. Ikeda, “Low-threshold operation of hemispherical microcavity single-quantum-well lasers at 4-K,” Appl. Phys. Lett. 62(5), 443–445 (1993).
[CrossRef]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[CrossRef]

D. Mangaiyarkarasi, M. B. H. Breese, and Y. S. Ow, “Fabrication of three dimensional porous silicon distributed Bragg reflectors,” Appl. Phys. Lett. 93(22), 221905 (2008).
[CrossRef]

J. Appl. Phys. (3)

X. J. Qiu, X. W. Tan, Z. Wang, G. Y. Liu, and Z. H. Xiong, “Tunable, narrow, and enhanced electroluminescent emission from porous-silicon-reflector-based organic microcavities,” J. Appl. Phys. 100(7), 074503 (2006).
[CrossRef]

L. Lai and E. A. Irene, “Limiting Si/SiO2 interface roughness resulting from thermal oxidation,” J. Appl. Phys. 86(3), 1729–1735 (1999).
[CrossRef]

G. Lérondel, R. Romestain, and S. Barret, “Roughness of the porous silicon dissolution interface,” J. Appl. Phys. 81(9), 6171–6178 (1997).
[CrossRef]

J. Electrochem. Soc. (2)

A. A. Busnaina, “An Experimental Study of Megasonic Cleaning of Silicon Wafers,” J. Electrochem. Soc. 142(8), 2812 (1995).
[CrossRef]

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions,” J. Electrochem. Soc. 137(11), 3612–3626 (1990).
[CrossRef]

J. Micromech. Microeng. (1)

T. E. Bell, P. T. J. Gennissen, D. DeMunter, and M. Kuhl, “Porous silicon as a sacrificial material,” J. Micromech. Microeng. 6(4), 361–369 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. H. Lin, S. Y. Wen, and W. Y. Hsu, “Variable optical attenuator with tunable nonsmooth curved mirror,” Jpn. J. Appl. Phys. 43, 7764–7768 (2004).
[CrossRef]

Lab Chip (1)

D. C. Appleyard and M. J. Lang, “Active particle control through silicon using conventional optical trapping techniques,” Lab Chip 7(12), 1837–1840 (2007).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

Y. S. Ow, M. B. H. Breese, Y. R. Leng, S. Azimi, E. J. Teo, and X. W. Sun, “Micromachining of amplitude and phase modulated reflective computer generated hologram patterns in silicon,” Nucl. Instrum. Methods Phys. Res. B 268(9), 1416–1421 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Opt. Rev. (1)

Y. Aoki, Y. Shimada, and K. Iga, “Collimation characteristics of planar microlens for parallel optical interconnect,” Opt. Rev. 7(6), 483–485 (2000).
[CrossRef]

Phys. Rev. A (1)

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[CrossRef]

Phys. Rev. B (1)

M. B. H. Breese, F. J. T. Champeaux, E. J. Teo, A. A. Bettiol, and D. J. Blackwood, “Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization,” Phys. Rev. B 73(3), 035428 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

S. E. Morin, C. C. Yu, and T. W. Mossberg, “Strong Atom-Cavity Coupling Over Large Volumes and the Observation of Subnatural Intracavity Atomic Linewidths,” Phys. Rev. Lett. 73(11), 1489–1492 (1994).
[CrossRef] [PubMed]

T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, Continuous Observation, and Quantum Computing: A Cavity QED Model,” Phys. Rev. Lett. 75(21), 3788–3791 (1995).
[CrossRef] [PubMed]

Other (2)

M. Navarro, J. M. LopezVillegas, J. Samitier, J. R. Morante, J. Bausells, and A. Merlos, “Electrochemical etching of porous silicon sacrificial layers for micromachining applications,” in 7th Workshop on Micromachining, Micromechanics and Microsystems in Europe (MME 96, 1996), pp. 131–132.

V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a), (b) and (c) shows the cross sectional schematic process flow for the fabrication of the concave mirrors and concave cylinders. (d) defines the parameters A, C and D as the width of the irradiated annulus/lines, diameter of the central aperture and the final diameter of the mirror/cylinder respectively. (e) and (f) show the photoresists patterns used for fabricating the concave mirrors and cylinders respectively and the equivalent parameters A, C and D of the cylinders and mirrors in planer view.

Fig. 2
Fig. 2

(a) and (b) shows concave cylindrical mirrors. (c) and (d) show concave spherical mirrors. (a) is an optical image of a D = 20 μm concave cylinder. (b) shows a cross section of a concave cylinder with D = 100 μm, which may also represent the cross sections of D = 100 μm concave mirrors. (c) is an optical image of a large array of D = 20 μm concave mirrors. (d) is an SEM image of a single D = 100 μm concave mirror.

Fig. 3
Fig. 3

(a) is a SEM cross section image of a concave cylinder with D = 20 μm fabricated with a PSi multilayer above the concave silicon surface. (b) shows a SEM cross section of a concave cylinder anodized such that the irradiated regions are not fully undercut and the PSi removed with diluted KOH.

Fig. 4
Fig. 4

(a) is a plot showing the r.m.s. roughness versus oxidization time for three different samples s1, s2 and s3. (b) shows the AFM image of the sample with the lowest r.m.s. roughness of 1.7 nm over an area of 5 x 5μm.

Fig. 5
Fig. 5

(a) shows the ‘blossom’ pattern on a concave mirror resulting from the anisotropic KOH removal of PSi. In (b), the Psi was removed by electropolishing. (c) is an optical image of a concave mirror where the bottom of mirror is in focus. (d) is a plot of the intensity of the bright spot in the center of a concave mirror versus the microscope stage vertical position measured from the bottom of the concave mirror. The highest intensity is measured to be ~25 μm from the bottom of the mirror and this may be taken to be the focal length of the mirror.

Fig. 6
Fig. 6

(a), (b) and (c) are optical images of concave Distributed Bragg mirrors designed to focused and reflect blue, green and red respectively. These concave Bragg mirrors are illuminated with white light and they correctly select and focused their respective colors. A line scan was taken across the red concave Bragg mirror as shown in (c) and is plotted in (d). The plot correctly show that red is the dominant color focused to a point.

Metrics