Abstract

The ability of gratings made of dielectric ridges placed on top of flat metal layers to open gaps in the dispersion relation of surface plasmon polaritons (SPPs) is studied, both experimentally and theoretically. The gap position can be approximately predicted by the same relation as for standard optical Bragg stacks. The properties of the gap as a function of the grating parameters is numerically analyzed by using the Fourier modal method, and the presence of the gap is experimentally confirmed by leakage radiation microscopy. We also explore the performance of these dielectric gratings as SPP Bragg mirrors. The results show very good reflecting properties of these mirrors for a propagating SPP whose wavelength is inside the gap.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  4. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
    [CrossRef]
  5. J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical Near-Field Distributions of Surface Plasmon Waveguide Modes,” Phys. Rev. B 68(11), 115401 (2003).
    [CrossRef]
  6. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
    [CrossRef]
  7. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
    [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  9. Y. Satuby and M. Orenstein, “Surface-Plasmon-Polariton modes in deep metallic trenches- measurement and analysis,” Opt. Express 15(7), 4247–4252 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-7-4247 .
    [CrossRef] [PubMed]
  10. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
    [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [CrossRef]
  12. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
    [CrossRef] [PubMed]
  13. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
    [CrossRef] [PubMed]
  14. L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
    [CrossRef]
  15. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
    [CrossRef]
  16. J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
    [CrossRef]
  17. M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
    [CrossRef]
  18. M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
    [CrossRef] [PubMed]
  19. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
    [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
    [CrossRef] [PubMed]
  21. A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
    [CrossRef]
  22. J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
    [CrossRef]
  23. I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16(6), 3924–3930 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3924 .
    [CrossRef] [PubMed]
  24. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
    [CrossRef] [PubMed]
  25. G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, and R. F. Wallis, “Fresnel relations for surface polaritons at interfaces,” Opt. Lett. 8(12), 626–628 (1983).
    [CrossRef] [PubMed]
  26. S. Griesing, A. Englisch, and U. Hartmann, “Refractive and reflective behavior of polymer prisms used for surface plasmon guidance,” Opt. Lett. 33(6), 575–577 (2008).
    [CrossRef] [PubMed]
  27. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
    [CrossRef]
  28. Q. Wang, X. Yuan, P. Tan, and D. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-19271 .
    [CrossRef]
  29. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13585 .
    [CrossRef] [PubMed]
  30. J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
    [CrossRef]
  31. M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, Basel, 2003).
  32. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
    [CrossRef]
  33. M. Kretschmann, T. Leskova, and A. Maradudin, “Conical propagation of a surface polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
    [CrossRef]
  34. A. Y. Nikitin and L. Martín-Moreno, “Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects,” Phys. Rev. B 75(8), 081405 (2007).
    [CrossRef]
  35. A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30(8), 884–886 (2005).
    [CrossRef] [PubMed]
  36. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
    [CrossRef]
  37. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
    [CrossRef]
  38. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
    [CrossRef] [PubMed]
  39. A. Giannattasio and W. L. Barnes, “Direct observation of surface plasmon-polariton dispersion,” Opt. Express 13(2), 428–434 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-428 .
    [CrossRef] [PubMed]
  40. J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
    [CrossRef]

2008

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16(6), 3924–3930 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3924 .
[CrossRef] [PubMed]

S. Griesing, A. Englisch, and U. Hartmann, “Refractive and reflective behavior of polymer prisms used for surface plasmon guidance,” Opt. Lett. 33(6), 575–577 (2008).
[CrossRef] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

Q. Wang, X. Yuan, P. Tan, and D. Zhang, “Phase modulation of surface plasmon polaritons by surface relief dielectric structures,” Opt. Express 16(23), 19271–19276 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-19271 .
[CrossRef]

2007

A. Y. Nikitin and L. Martín-Moreno, “Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects,” Phys. Rev. B 75(8), 081405 (2007).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

Y. Satuby and M. Orenstein, “Surface-Plasmon-Polariton modes in deep metallic trenches- measurement and analysis,” Opt. Express 15(7), 4247–4252 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-7-4247 .
[CrossRef] [PubMed]

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

2006

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

2005

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical Near-Field Distributions of Surface Plasmon Waveguide Modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

M. Kretschmann, T. Leskova, and A. Maradudin, “Conical propagation of a surface polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[CrossRef]

2001

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

2000

1996

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

1983

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

A. Giannattasio and W. L. Barnes, “Direct observation of surface plasmon-polariton dispersion,” Opt. Express 13(2), 428–434 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-428 .
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Baudrion, A. L.

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

Baudrion, A.-L.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

Berini, P.

Berolo, E.

Boltasseva, A.

Bouhelier, A.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30(8), 884–886 (2005).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

I. P. Radko, A. B. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Refracting surface plasmon polaritons with nanoparticle arrays,” Opt. Express 16(6), 3924–3930 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-3924 .
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Bruyant, A.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

Charbonneau, R.

Chen, Z.

Colas des Francs, G.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

Dereux, A.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical Near-Field Distributions of Surface Plasmon Waveguide Modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

des Francs, G.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

Devaux, E.

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eng, L. M.

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Englisch, A.

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Evlyukhin, A. B.

Fainman, Y.

L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
[CrossRef]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

Feng, L.

L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
[CrossRef]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

Fukui, M.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Giannattasio, A.

Glass, N. E.

González, M.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

González, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Grafström, S.

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Gramotnev, D. K.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Grandidier, J.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

Griesing, S.

Haraguchi, M.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Hartmann, U.

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Holmgaard, T.

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Kawata, S.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Koller, D.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

Krasavin, A. V.

Krenn, J. R.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Kretschmann, M.

M. Kretschmann, T. Leskova, and A. Maradudin, “Conical propagation of a surface polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[CrossRef]

Lacroute, Y.

J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical Near-Field Distributions of Surface Plasmon Waveguide Modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

Lalanne, P.

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lecamp, G.

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Leskova, T.

M. Kretschmann, T. Leskova, and A. Maradudin, “Conical propagation of a surface polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[CrossRef]

Li, L.

Lisicka-Shrzek, E.

Lomakin, V.

L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
[CrossRef]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

Lu, M.-H.

L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
[CrossRef]

Maradudin, A.

M. Kretschmann, T. Leskova, and A. Maradudin, “Conical propagation of a surface polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[CrossRef]

Maradudin, A. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, and R. F. Wallis, “Fresnel relations for surface polaritons at interfaces,” Opt. Lett. 8(12), 626–628 (1983).
[CrossRef] [PubMed]

Markey, L.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16(18), 13585–13592 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-18-13585 .
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

A. Y. Nikitin and L. Martín-Moreno, “Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects,” Phys. Rev. B 75(8), 081405 (2007).
[CrossRef]

Massenot, S.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

Matsuo, S.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

Nikitin, A. Y.

A. Y. Nikitin and L. Martín-Moreno, “Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects,” Phys. Rev. B 75(8), 081405 (2007).
[CrossRef]

Ogawa, T.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Okamoto, T.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Pile, F. P.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Quidant, R.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

Radko, I. P.

Renger, J.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

Satuby, Y.

Shen, T. P.

Simonen, J.

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Skovgaard, P. M. W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Slutsky, B.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Stegeman, G. I.

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Stepanov, A. L.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
[CrossRef] [PubMed]

Tan, P.

Tetz, K. A.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wallis, R. F.

Wang, Q.

Weeber, J. C.

M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32(18), 2704–2706 (2007).
[CrossRef] [PubMed]

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical Near-Field Distributions of Surface Plasmon Waveguide Modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

Weeber, J.-C.

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

Wiederrecht, G. P.

Yuan, X.

Zayats, A. V.

Zhang, D.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Zia, R.

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

Appl. Phys. Lett.

F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006).
[CrossRef]

L. Feng, M.-H. Lu, V. Lomakin, and Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008).
[CrossRef]

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

J.-C. Weeber, A.-L. Baudrion, A. Bouhelier, A. Bruyant, G. Colas des Francs, R. Zia, and A. Dereux, “Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides,” Appl. Phys. Lett. 89(21), 211109 (2006).
[CrossRef]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91(24), 243102 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7(6), 1697–1700 (2007).
[CrossRef] [PubMed]

Nat. Photonics

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun.

M. Kretschmann, T. Leskova, and A. Maradudin, “Conical propagation of a surface polariton across a grating,” Opt. Commun. 215(4-6), 205–223 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Y. Nikitin and L. Martín-Moreno, “Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects,” Phys. Rev. B 75(8), 081405 (2007).
[CrossRef]

J. Renger, S. Grafström, and L. M. Eng, “Direct excitation of surface plasmon polaritons in nanopatterned metal surfaces and thin films,” Phys. Rev. B 76(4), 045431 (2007).
[CrossRef]

J. Grandidier, S. Massenot, G. des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78(24), 245419 (2008).
[CrossRef]

J. C. Weeber, Y. Lacroute, and A. Dereux, “Optical Near-Field Distributions of Surface Plasmon Waveguide Modes,” Phys. Rev. B 68(11), 115401 (2003).
[CrossRef]

A. L. Baudrion, J. C. Weeber, A. Dereux, G. Lecamp, P. Lalanne, and S. I. Bozhevolnyi, “Influence of the filling factor on the spectral properties of plasmonic crystals,” Phys. Rev. B 74(12), 125406 (2006).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008).
[CrossRef]

Phys. Rev. B Condens. Matter

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

M. Nevière and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, Basel, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Reflectivity map for a layered system consisting of a 50-nm-thick Au film covered by a 100-nm-thick dielectric (n = 1.49) film as shown in the inset. The SPP dispersion curve is clearly visible in blue. (b) Effective index, neff , of SPPs propagating on a 50-nm-thick Au film covered by a dielectric layer of thickness t for λ0 = 800 nm. (c) Reflectivity map of a 50-nm-thick Au surface covered by a structured dielectric layer for wave incident perpendicular to the grating lines. The dielectric layer consists of a grating of ridges of height h = 100 nm and width d1 = 150 nm separated by air (d2 = 205 nm) as shown in (d). In this sketch, k S P P i n c corresponds to the SPP wavevector incident on the grating, and ϕinc represents the angle of incidence.

Fig. 2
Fig. 2

(a) Gap width evolution with the filling factor for dielectric gratings of h = 50 nm and d = 355 nm (b) Gap position with respect to filling factor for the same system. (c) Gap width versus grating height for a system with d = 355 nm and optimum filling factor (FF = 0.42). (d) Gap position with respect to height for the same system. (e) Gap width versus the angle of incidence for gratings of h = 100 nm and d calculated from Eq. (5) to obtain a gap at λ0 = 800 nm. (f) Gap width versus angle of incidence for gratings with gaps centered at λ0 ≅ 785 nm.

Fig. 3
Fig. 3

(a) Gap width evolution with the filling factor (FF) for metallic gratings with h = 50 nm, d = 355 nm and ϕinc = 0°. (b) Gap position with respect to filling factor for the same system. (c) Dispersion relation for a metallic grating with h = 50 nm, d = 355 nm and FF = 0.50. (d) Gap width versus the angle of incidence for metallic gratings with h = 50 nm and d calculated according to Eq. (5) for providing a gap centered at λ0 = 724 nm. (e) Gap position with respect to angle of incidence for the same system as (d).

Fig. 4
Fig. 4

(a) Experimental leakage radiation microscopy (LRM) image of the Fourier plane of a SPP (λ0 = 775 nm) propagating on a Au surface decorated with a dielectric grating consisting of PMMA ridges of h = 95 nm, d = 360 nm and FF = 0.42. (b) Same as in (a) but for a grating with d = 466 nm. (c) Calculated iso-frequency map at λ0 = 775 nm for a SPP traveling on a Au surface decorated with a dielectric grating (n = 1.47, h = 95 nm, d = 360 nm and FF = 0.42). (d) Same as (c), but for the grating with d = 466 nm.

Fig. 5
Fig. 5

(a) Sketch of the geometry used for the calculation of the reflectivity of a dielectric-based SPP Bragg mirror. (b) Electric field map distribution of a SPP (λ0 = 765 nm) propagating on a 50 nm thick Au film and impinging on a grating composed of 10 SiO2 ridges (h = 100 nm, d1 = 200 nm and d = 466 nm). (c) Evolution of reflectance, transmittance and losses with respect to number of lines composing the mirror (h = 100 nm, d1 = 200 nm and d = 466 nm). (d) Electric field map distribution of a SPP (λ0 = 800 nm) impinging on 10 lines SiO2 Bragg mirror designed for a different wavelength (h = 50 nm, d1 = 150 nm, d = 416 nm, gap centered around 586 nm).

Fig. 6
Fig. 6

(a) CCD image of leakage radiation by SPPs hitting a dielectric Bragg mirror. The SPPs are excited in two counter-propagating directions by focusing a laser on top of a narrow dielectric ridge, and the mirror is indicated by the lines. The sample is additionally illuminated by a white light lamp to show the excitation line and the mirror position. (b) Direct space leakage radiation (LRM) image for a SPP (λ0 = 750 nm) impinging at 45° on a dielectric mirror made of 20 ridges of SU-8 (d = 436 nm). The numerical aperture of the objective that focuses the laser on the launching line to excite the SPP is 0.65. (c) Fourier space image of the same mirror as in (b). (d) Same as in (b) but reducing the numerical aperture of the focusing objective. (e) Fourier image corresponding to (d). The direct transmission of the laser has been blocked by a mask.

Fig. 7
Fig. 7

Evolution of the intensity along the incident and reflected beams for a mirror composed of 20 SU-8 ridges (d = 436 nm, d1 = 184 nm). The inset shows the corresponding LRM image, and the red line marks the position of the intensity profile.

Tables (1)

Tables Icon

Table 1 Comparison between the intended gap center position as calculated by Eq. (4) and the actual gap center position obtained from the computed dispersion relation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k S P P = k 0 ε m ε d ε m + ε d ,
k S P P 1 d 1 + k S P P 2 d 2 = π ,
n eff 1 d 1 + n eff 2 d 2 = λ 0 2 ,
n eff 1 d 1 cos ϕ 1 + n eff 2 d 2 cos ϕ 2 = λ 0 2 ,
d = λ 0 2 n eff cos ϕ i n c ,

Metrics