Abstract

In order to carry out precise measurements of the thickness of a dielectric layer deposited on a metal surface, we have introduced an ellipsometric measurement technique (EMT) to the modified Otto’s configuration (MOC) that is used for observing surface plasmon resonance (SPR). For that purpose, we have measured the thickness of the Au layer by the EMT at four different locations on an elliptic fringe pattern obtained from the MOC basing on a four-layer structure model: prism (BK7)-air-Au-substrate (BK7). Then, we have measured that of a TiO2 layer deposited on the Au layer by the EMT basing on a five-layer structure model: prism (BK7)-air-TiO2-Au-substrate (BK7). We have found experimentally that the combination of EMT and MOC is effective for measuring the thickness of the dielectric layer on the metal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Iwata and G. Komoda,“Measurements of complex refractive indices of metals at several wavelengths by frustrated total internal reflection due to surface plasmon resonance,” Appl. Opt. 47, 2386-2391 (2008).
    [CrossRef] [PubMed]
  2. Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
    [CrossRef]
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1988).
  4. A. Otto, “Excitation of nonradiative surface waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968).
    [CrossRef]
  5. E. Z. Kretschmann, “Die Bestimmung Optischer Konstanten von Mettlen duch Anregung von Oberfl¨achenplasmaschwingungen, Z. Phys. 241, 313-324 (1971).
    [CrossRef]
  6. T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46, 1575-1582 (2007).
    [CrossRef] [PubMed]
  7. M. Osterfeld and H. Franke, “Optical gas detection using metal film enhanced leaky mode spectroscopy, Appl. Phys. Lett. 62, 2310-2312 (1993).
    [CrossRef]
  8. L. Levesque, B. E. Paton, and S. H. Payne, “Precise thickness and refractive index determination of polymide films using attenuated total reflection, Appl. Opt. 33, 8036-8040 (1994).
    [CrossRef] [PubMed]
  9. L. Levesque and B. E. Paton, “Detection of defects in multiple-layer structures by using surface plasmon resonance, Appl. Opt. 36, 7199-75203 (1997).
    [CrossRef]
  10. F. Yang, J. R. Sambeles, and G. W. Bradberry, “Long-range surface modes supported by thin films, Phys. Rev. B 44, 5855-5872 (1991).
    [CrossRef]
  11. M. Fukui and K. Matsugi, “Attenuated total reflection mode of surface polaritons in semi-infinite and finite superlattices, J. Phys. Soc. Jpn. 56, 2964-2976 (1987).
    [CrossRef]
  12. M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
    [CrossRef]

2008 (1)

2007 (1)

2006 (1)

Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
[CrossRef]

1997 (1)

1994 (1)

1993 (1)

M. Osterfeld and H. Franke, “Optical gas detection using metal film enhanced leaky mode spectroscopy, Appl. Phys. Lett. 62, 2310-2312 (1993).
[CrossRef]

1992 (1)

M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
[CrossRef]

1991 (1)

F. Yang, J. R. Sambeles, and G. W. Bradberry, “Long-range surface modes supported by thin films, Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

1987 (1)

M. Fukui and K. Matsugi, “Attenuated total reflection mode of surface polaritons in semi-infinite and finite superlattices, J. Phys. Soc. Jpn. 56, 2964-2976 (1987).
[CrossRef]

1971 (1)

E. Z. Kretschmann, “Die Bestimmung Optischer Konstanten von Mettlen duch Anregung von Oberfl¨achenplasmaschwingungen, Z. Phys. 241, 313-324 (1971).
[CrossRef]

1968 (1)

A. Otto, “Excitation of nonradiative surface waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968).
[CrossRef]

Bliokh, Y. P.

Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
[CrossRef]

Bradberry, G. W.

F. Yang, J. R. Sambeles, and G. W. Bradberry, “Long-range surface modes supported by thin films, Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

Felsteiner, J.

Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
[CrossRef]

Franke, H.

M. Osterfeld and H. Franke, “Optical gas detection using metal film enhanced leaky mode spectroscopy, Appl. Phys. Lett. 62, 2310-2312 (1993).
[CrossRef]

Fukui, M.

M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
[CrossRef]

M. Fukui and K. Matsugi, “Attenuated total reflection mode of surface polaritons in semi-infinite and finite superlattices, J. Phys. Soc. Jpn. 56, 2964-2976 (1987).
[CrossRef]

Haraguchi, M.

M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
[CrossRef]

Iwata, T.

Komoda, G.

Kretschmann, E. Z.

E. Z. Kretschmann, “Die Bestimmung Optischer Konstanten von Mettlen duch Anregung von Oberfl¨achenplasmaschwingungen, Z. Phys. 241, 313-324 (1971).
[CrossRef]

Levesque, L.

Lipson, S. G.

Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
[CrossRef]

Maeda, S.

Matsugi, K.

M. Fukui and K. Matsugi, “Attenuated total reflection mode of surface polaritons in semi-infinite and finite superlattices, J. Phys. Soc. Jpn. 56, 2964-2976 (1987).
[CrossRef]

Osterfeld, M.

M. Osterfeld and H. Franke, “Optical gas detection using metal film enhanced leaky mode spectroscopy, Appl. Phys. Lett. 62, 2310-2312 (1993).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968).
[CrossRef]

Paton, B. E.

Payne, S. H.

Sambeles, J. R.

F. Yang, J. R. Sambeles, and G. W. Bradberry, “Long-range surface modes supported by thin films, Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

Shiba, H.

M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
[CrossRef]

Takabayashi, M.

M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
[CrossRef]

Vander, R.

Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambeles, and G. W. Bradberry, “Long-range surface modes supported by thin films, Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

M. Osterfeld and H. Franke, “Optical gas detection using metal film enhanced leaky mode spectroscopy, Appl. Phys. Lett. 62, 2310-2312 (1993).
[CrossRef]

Y. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection, Appl. Phys. Lett. 89, 021908 (2006).
[CrossRef]

J. Phys. Soc. Jpn. (2)

M. Fukui and K. Matsugi, “Attenuated total reflection mode of surface polaritons in semi-infinite and finite superlattices, J. Phys. Soc. Jpn. 56, 2964-2976 (1987).
[CrossRef]

M. Takabayashi, H. Shiba, M. Haraguchi, and M. Fukui, “Studies on surface polaritons in ultrathin films sandwitched by identical dielectrics, J. Phys. Soc. Jpn. 61, 2550-2556 (1992).
[CrossRef]

Phys. Rev. B (1)

F. Yang, J. R. Sambeles, and G. W. Bradberry, “Long-range surface modes supported by thin films, Phys. Rev. B 44, 5855-5872 (1991).
[CrossRef]

Z. Phys. (2)

A. Otto, “Excitation of nonradiative surface waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410 (1968).
[CrossRef]

E. Z. Kretschmann, “Die Bestimmung Optischer Konstanten von Mettlen duch Anregung von Oberfl¨achenplasmaschwingungen, Z. Phys. 241, 313-324 (1971).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the optical setup of the rotating-analyzer ellipsometer (RAE) using a modified Otto’s configuration (MOC).

Fig. 2.
Fig. 2.

Two optical models used for numerical simulations and actual measurements: (a) a four-layer model (prism (BK7)-air-Au-substrate (BK7)) and (b) a five-layer model (prism (BK7)-air-TiO2-Au-substrate (BK7)).

Fig. 3.
Fig. 3.

(a) A measurement result of the fringe pattern obtained from a sample with the fourlayer structure, where θ = 43.7°±0.05°, (b) a cross-sectional Rp -profile along a line X-X’ in (a), and (c) that along a line Y-Y’ in (a). A solid line shows a theoretically fitted curve for each Rp -profile shown by a dotted line.

Fig. 4.
Fig. 4.

(a)-(d) Measurement results at locations (A)-(D) on the fringe pattern shown in Fig. 3(a) by using the RAE: plots of intensities as a function of the angle of the transmission axis of the analyzer. (e)-(h) Corresponding states of polarization ellipses of the reflected light (dotted lines) and numerically fitted ones (solid line).

Fig. 5.
Fig. 5.

Two plots of squared sum of residuals between the experimentally obtained data and the numerically fitted ones as a function of the thickness of the Au layer, which were used in the conventional Rp -measurement in Fig. 3(c) and in the EMT in Fig. 4(d) for determining the thickness of the Au layer 54.0 nm and 53.7 nm, respectively.

Fig. 6.
Fig. 6.

(a) A measurement result of the fringe pattern obtained from a sample with the five-layer structure, where θ = 46.45°±0.05°, (b) a cross-sectional Rp -profile along a line X-X’ in (a), and (c) that along a line Y-Y’ in (a). A solid line shows a theoretically fitted curve for each Rp -profile shown by a dotted line, where we put the thickness of the Au layer d 1 ¯ = 54.0 nm .

Fig. 7.
Fig. 7.

(a)-(d) Measurement results at points (A)-(D) on the fringe dip shown in Fig. 5(a) by using the RAE: plots of intensities as a function of the angle of the transmission axis of the analyzer. (e)-(h) Corresponding states of polarization ellipses of the reflected light (dotted lines) and numerically fitted ones (solid line).

Metrics