Abstract

We describe a simple way to generate a wide-area high-resolution focus grid by in-line holography and study the factors that impacts its quality. In our holographic recording setup, the reference beam was the direct transmission of the incoming collimated laser beam through a mask coating with thin metal film, and the sample beam was the transmission of the laser through small apertures fabricated on the mask. The interference of the two beams was then recorded by a holographic plate positioned behind the mask. Compared with other recording schemes, the in-line holography scheme has many distinct advantages and is more suitable for generating a wide-area focus grid. We explored the dependence of diffraction quality, including reconstructed focus spot intensity and spot size, on different parameters for recording, such as optical density of the metal film, size of the apertures, and focal lengths. A wide-area focus grid (170 x 138 spots with area 5.1 mm x 4.1 mm) was recorded using the in-line holography scheme for a demonstration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005).
    [PubMed]
  2. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998).
    [CrossRef]
  3. P. M. Lundquist, C. F. Zhong, P. Zhao, A. B. Tomaney, P. S. Peluso, J. Dixon, B. Bettman, Y. Lacroix, D. P. Kwo, E. McCullough, M. Maxham, K. Hester, P. McNitt, D. M. Grey, C. Henriquez, M. Foquet, S. W. Turner, and D. Zaccarin, “Parallel confocal detection of single molecules in real time,” Opt. Lett. 33(9), 1026–1028 (2008).
    [CrossRef] [PubMed]
  4. J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
    [CrossRef] [PubMed]
  5. M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol. 152(1), 1–4 (2007).
    [CrossRef] [PubMed]
  6. J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
    [PubMed]
  7. F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
    [CrossRef]
  8. W. Liu and D. Psaltis, “Pixel size limit in holographic memories,” Opt. Lett. 24(19), 1340–1342 (1999).
    [CrossRef]
  9. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  10. J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67(22), 3106–3109 (1991).
    [CrossRef] [PubMed]
  11. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
    [CrossRef] [PubMed]
  12. V. Moreno, J. F. Roman, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
    [CrossRef]
  13. M. H. Horman and H. H. M. Chau, “Zone plate theory based on holography,” Appl. Opt. 6(2), 317–322 (1967).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 3rd edition, 2004), Chap. 9.
  15. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  16. A. K. Richter and F. P. Carlson, “Holographically generated lens,” Appl. Opt. 13(12), 2924–2930 (1974).
    [CrossRef] [PubMed]
  17. H. I. Bjelkhagen, Silver-halide recording materials for holography and their processing (Springer, 2nd edition, 1995), Chap. 5.

2009 (1)

F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol. 152(1), 1–4 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

2005 (1)

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005).
[PubMed]

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (1)

V. Moreno, J. F. Roman, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

1991 (1)

J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67(22), 3106–3109 (1991).
[CrossRef] [PubMed]

1974 (1)

1967 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Anthony, L.

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Barton, J. J.

J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67(22), 3106–3109 (1991).
[CrossRef] [PubMed]

Bettman, B.

Bewersdorf, J.

Brands, T.

F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
[CrossRef]

Broch, S.

F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
[CrossRef]

Buse, K.

F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
[CrossRef]

Carlson, F. P.

Chau, H. H. M.

Cui, X.

J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
[PubMed]

Dixon, J.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Foquet, M.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gilbertson, J. R.

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Gräf, R.

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005).
[PubMed]

Grey, D. M.

Hell, S. W.

Henriquez, C.

Hester, K.

Ho, J.

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Horman, M. H.

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Jukic, D. M.

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Kalkum, F.

F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
[CrossRef]

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Kwo, D. P.

Lacroix, Y.

Lee, L. M.

J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
[PubMed]

Liu, W.

Lundquist, P. M.

Maxham, M.

McCullough, E.

McNitt, P.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Moreno, V.

V. Moreno, J. F. Roman, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Oheim, M.

M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol. 152(1), 1–4 (2007).
[CrossRef] [PubMed]

Parwani, A. V.

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Peluso, P. S.

Pick, R.

Psaltis, D.

Richter, A. K.

Rietdorf, J.

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005).
[PubMed]

Roman, J. F.

V. Moreno, J. F. Roman, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Salgueiro, J. R.

V. Moreno, J. F. Roman, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Tomaney, A. B.

Turner, S. W.

Wu, J.

J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
[PubMed]

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Yagi, Y.

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Yang, C.

J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
[PubMed]

Yang, Y. M.

J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
[PubMed]

Zaccarin, D.

Zhao, P.

Zheng, G.

J. Wu, X. Cui, G. Zheng, Y. M. Yang, L. M. Lee, and C. Yang, “A wide field-of-view microscope based on holographic focus grid illumination,” (accepted by Opt. Lett. ).
[PubMed]

Zhong, C. F.

Zimmermann, T.

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005).
[PubMed]

Adv. Biochem. Eng. Biotechnol. (1)

R. Gräf, J. Rietdorf, and T. Zimmermann, “Live cell spinning disk microscopy,” Adv. Biochem. Eng. Biotechnol. 95, 57–75 (2005).
[PubMed]

Am. J. Phys. (1)

V. Moreno, J. F. Roman, and J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65(6), 556–562 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

F. Kalkum, S. Broch, T. Brands, and K. Buse, “Holographic phase conjugation through a sub-wavelength hole,” Appl. Phys. B 95(3), 637–645 (2009).
[CrossRef]

Br. J. Pharmacol. (1)

M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol. 152(1), 1–4 (2007).
[CrossRef] [PubMed]

Hum. Pathol. (1)

J. Ho, A. V. Parwani, D. M. Jukic, Y. Yagi, L. Anthony, and J. R. Gilbertson, “Use of whole slide imaging in surgical pathology quality assurance: design and pilot validation studies,” Hum. Pathol. 37(3), 322–331 (2006).
[CrossRef] [PubMed]

Nature (2)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67(22), 3106–3109 (1991).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001).
[CrossRef] [PubMed]

Other (2)

H. I. Bjelkhagen, Silver-halide recording materials for holography and their processing (Springer, 2nd edition, 1995), Chap. 5.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 3rd edition, 2004), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

In-line holography scheme for fabricating a holography lens. (a) Recording of the hologram; (b) Reconstruction of the focus spot.

Fig. 2
Fig. 2

Microscope image of masks and reconstructed spots of holograms under 4X objective. (a) Mask with OD 4.2; (b) Reconstructed spots of hologram corresponding to OD-4.2 mask; (c) Mask with OD 5.3; (d) Reconstructed spots of hologram corresponding to OD-5.3 mask.

Fig. 3
Fig. 3

Reconstructed spot intensity and FWHM spot size versus aperture size at different ODs and different focal lengths. (a)(b) OD = 2.1; (c)(d) OD = 3.2; (e)(f) OD = 4.2.

Fig. 4
Fig. 4

Reconstructed spot intensity vs. focal length and OD for 0.8-μm aperture size. The squares indicate the experiment data points.

Fig. 5
Fig. 5

Microscope image of a small part of the reconstructed focus grid under a 20X objective.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A 1 f n exp ( i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] )
I ( x ) | A 0 + A 1 f n exp ( i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) | 2 = A 0 2 + 2 A 0 A 1 f n cos ( π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) + A 1 2 f 2 n exp ( i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) n exp ( i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) A 0 2 + 2 A 0 A 1 f n cos ( π f λ [ ( x x n ) 2 + ( y y n ) 2 ] )
t ( x ) = exp [ i K ( A 0 2 + 2 A 0 A 1 f n cos ( π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) ) ] = exp ( i K A 0 2 ) n exp [ i β cos ( π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) ]
exp [ i β cos ( π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) ] = l = ( i ) l J l ( β ) exp [ i l π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ]
J l ( β ) 1 Γ ( l + 1 ) ( β 2 ) l
exp [ i β cos ( π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ) ] J 0 ( β ) + i J 1 ( β ) exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ] + i J 1 ( β ) exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ] 1 + i β 2 Γ ( 2 ) exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ] + i β 2 Γ ( 2 ) exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ]
t ( x ) n ( 1 + i β 2 Γ ( 2 ) exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ] + i β 2 Γ ( 2 ) exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ] ) 1 + i β 2 Γ ( 2 ) n exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ] + i β 2 Γ ( 2 ) n exp [ i π f λ [ ( x x n ) 2 + ( y y n ) 2 ] ]
| i β 2 Γ ( 2 ) | 2 β 2 A 0 2 A 1 2 / f 2

Metrics