Abstract

Silicon microdisks with dynamically-tunable resonance spectra are achieved with nanoscale, in-plane silicon electrical contacts in a single lithographic step. Electrical current is passed through the devices to enable thermal tuning via joule heating. A 14nm wavelength shift is demonstrated with 1.6mW power consumption in devices with >20nm free spectral ranges and quality factors exceeding 20,000. Spectral shifts equal to a full width at half maximum can be achieved with ~ 10µW tuning power for a mode with quality factor of 20,000.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef] [PubMed]
  2. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), pp. 537–538.
  3. . S. Manipatruni, R. Dokania, B. Schmidt, N. Sherwood-Droz, C. Poitras, A. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33, 2185–2187 (2008).
    [CrossRef] [PubMed]
  4. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Proc. IEEE 2008 Int. Meeting Group IV Photon,” (Sorrento, Italy, 2008), pp. 4–6.
  5. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
    [CrossRef]
  6. M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
    [CrossRef]
  7. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
    [CrossRef]
  8. M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
    [CrossRef]
  9. I. Frank, P. Deotare, M. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
    [CrossRef] [PubMed]
  10. P. T. Rakich, M. A. Popovic, M. R. Watts, T. Barwicz, H. I. Smith, and E. P. Ippen, “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31, 1241–1243 (2006).
    [CrossRef] [PubMed]
  11. D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
    [CrossRef]
  12. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915–15922 (2008).
    [CrossRef] [PubMed]
  13. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [CrossRef]
  14. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17, 23323–23331 (2009).
    [CrossRef]
  15. M. Oxborrow, “Traceable 2-d finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
    [CrossRef]
  16. M. Borselli, T.J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [CrossRef] [PubMed]
  17. M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
    [CrossRef]

2010

2009

M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
[CrossRef]

J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17, 23323–23331 (2009).
[CrossRef]

2008

2007

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef] [PubMed]

M. Oxborrow, “Traceable 2-d finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[CrossRef]

2006

2005

2004

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

1967

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Apsel, A.

Arani, D.

D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Barclay, P.

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Barwicz, T.

Benyoucef, M.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Bergman, K.

Biberman, A.

Borselli, M.

M. Borselli, T.J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Chen, L.

Deotare, P.

Dokania, R.

Elston, S.

Englund, D.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Fernandes, G.

Frank, I.

Fushman, I.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Humar, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
[CrossRef]

Ippen, E. P.

Johnson, T.J.

Kiravittaya, S.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Lee, B. G.

Lipson, M.

Liu, Z.

Loncar, M.

Manipatruni, S.

Martin, A.

D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

McCutcheon, M.

Mei, Y. F.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Min, B.

D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Muevi, I.

M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
[CrossRef]

Oxborrow, M.

M. Oxborrow, “Traceable 2-d finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

M. Borselli, T.J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
[CrossRef]

Petroff, P.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Poitras, C.

Popovic, M. A.

Rakich, P. T.

Rastelli, A.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Ravnik, M.

M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
[CrossRef]

Schmidt, B.

Schmidt, O. G.

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Shainline, J.

Shakya, J.

Sherwood-Droz, N.

Smith, H. I.

Srinivasan, K.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

Stoltz, N.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Vahala, K. J.

D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Vuckovic, J.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Waks, E.

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

Wang, H.

Watts, M. R.

Xu, J.

Xu, Q.

Zia, R.

Appl. Phys. Lett.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90, 031114 (2007).
[CrossRef]

I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90, 091118 (2007).
[CrossRef]

D. Arani, B. Min, A. Martin, and K. J. Vahala, “Electrical thermo-optic tuning of ultrahigh-Q microtoroid resonators,” Appl. Phys. Lett. 85, 5439–5441 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85, 3693–3695 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Oxborrow, “Traceable 2-d finite element simulation of the whispering gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209–1218 (2007).
[CrossRef]

Nature Photon.

M. Humar, M. Ravnik, S. Pajk, and I. Muevi, “Electrically tunable liquid crystal optical microresonators,” Nature Photon. 3, 595–600 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. Benyoucef, S. Kiravittaya, Y. F. Mei, A. Rastelli, and O. G. Schmidt, “Strongly coupled semiconductor microcavities: a route to couple artificial atoms over micrometric distances,” Phys. Rev. B 77, 035108 (2008).
[CrossRef]

Physica

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Other

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in “Proc. IEEE 2008 Int. Meeting Group IV Photon,” (Sorrento, Italy, 2008), pp. 4–6.

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in “The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society,” (2007), pp. 537–538.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Microdisk structure with electrical contacts. (a) SEM image of the structure under consideration. (b) Electro-thermal simulation data. The surface temperature of the structure is shown.

Fig. 2.
Fig. 2.

(Color online) Tapered fiber spectra of a tunable microdisk. Spectra are shown at tuning powers from 0W to 1.6mW. Several prominent peaks are labeled and their behavior characterized.

Fig. 3.
Fig. 3.

(Color online) Difference in mode shifts between TE and TM polarized modes. (a) Experimental data of resonant wavelength shifts for fifteen modes of various radial orders as a function of power. TE and TM modes are seen to separate into distinct groups independent of radial mode order. (b) Theoretical prediction of mode shifts for six TE and six TM modes of various radial mode orders plotted as a function of power. The corresponding index of refraction labels the x-axis on the top.

Fig. 4.
Fig. 4.

(Color online) |E|2 calculated for the (a) TE2,42 mode and (b) TM2,25 mode. Field profiles are plotted in the ρz plane and are assumed to have exp(imϕ) azimuthal dependence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q M 1 = Q D 1 + Q C 1 + Q P 1 .
ξ = disk ε ( r ) E ( r ) 2 d r all space ε ( r ) E ( r ) 2 d r .

Metrics