Abstract

Microlenses are widely studied in two main areas: fabrication and characterization. Nowadays, characterization draws more attention because it is difficult to apply test techniques to microlenses that are used for conventional optical systems. Especially, small microlenses on a substrate are difficult to characterize because their back focus often stays in the substrate. Here we propose immersion high-resolution interference microscopy to characterize small-size microlenses at three visible wavelengths. Test results for 20-μm-diameter microlenses are presented and discussed. We cover not only standard characterizations like wavefront investigations but also experiments of actual focus properties and chromatic behaviors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).
  2. T. Miyashita, “International standards for metrology of microlens arrays,” Proc. SPIE 5858, 585802 (2005).
    [CrossRef]
  3. T. Miyashita, M. Kato, and J. Ohta, “Wavefront aberration measurement technology for microlenses using a Mach–Zehnder interferometer with effective apertures,” Opt. Eng. 48(7), 073609 (2009).
    [CrossRef]
  4. J. Schwider and H. Sickinger, “Array tests for microlenses,” Optik (Stuttg.) 107, 26–34 (1997).
  5. Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
    [CrossRef]
  6. U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
    [CrossRef]
  7. C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
    [CrossRef]
  8. M.-S. Kim, T. Scharf, and H. P. Herzig, “Amplitude and phase measurements of highly focused light in optical data storage systems,” accepted for publication in Jpn. J. Appl. Phys. (2010).
    [CrossRef]
  9. D. Malacara, Opical Shop Testing (Wiley, 1977), Chap. 2.
  10. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983).
    [CrossRef] [PubMed]
  11. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), Chaps. 7 and 9.
  12. H. Gross, H. Zugge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007) Vol. 3, p. 126.
  13. P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
    [CrossRef]
  14. H. Sickinger, J. Schwider, and B. Manzke, “Fiber-based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik (Stuttg.) 110, 239–243 (1999).

2010

M.-S. Kim, T. Scharf, and H. P. Herzig, “Amplitude and phase measurements of highly focused light in optical data storage systems,” accepted for publication in Jpn. J. Appl. Phys. (2010).
[CrossRef]

2009

T. Miyashita, M. Kato, and J. Ohta, “Wavefront aberration measurement technology for microlenses using a Mach–Zehnder interferometer with effective apertures,” Opt. Eng. 48(7), 073609 (2009).
[CrossRef]

2006

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

2005

T. Miyashita, “International standards for metrology of microlens arrays,” Proc. SPIE 5858, 585802 (2005).
[CrossRef]

1999

H. Sickinger, J. Schwider, and B. Manzke, “Fiber-based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik (Stuttg.) 110, 239–243 (1999).

1998

U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

1997

J. Schwider and H. Sickinger, “Array tests for microlenses,” Optik (Stuttg.) 107, 26–34 (1997).

1983

1981

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[CrossRef]

Blattner, P.

U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
[CrossRef]

Burow, R.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Dändiker, R.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

Dändliker, R.

U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
[CrossRef]

Elssner, K.-E.

Grzanna, J.

Herzig, H. P.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Amplitude and phase measurements of highly focused light in optical data storage systems,” accepted for publication in Jpn. J. Appl. Phys. (2010).
[CrossRef]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Husser, A.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Kato, M.

T. Miyashita, M. Kato, and J. Ohta, “Wavefront aberration measurement technology for microlenses using a Mach–Zehnder interferometer with effective apertures,” Opt. Eng. 48(7), 073609 (2009).
[CrossRef]

Kim, M.-S.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Amplitude and phase measurements of highly focused light in optical data storage systems,” accepted for publication in Jpn. J. Appl. Phys. (2010).
[CrossRef]

Li, Y.

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[CrossRef]

Manzke, B.

H. Sickinger, J. Schwider, and B. Manzke, “Fiber-based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik (Stuttg.) 110, 239–243 (1999).

Märki, I.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

Merkel, K.

Miyashita, T.

T. Miyashita, M. Kato, and J. Ohta, “Wavefront aberration measurement technology for microlenses using a Mach–Zehnder interferometer with effective apertures,” Opt. Eng. 48(7), 073609 (2009).
[CrossRef]

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

T. Miyashita, “International standards for metrology of microlens arrays,” Proc. SPIE 5858, 585802 (2005).
[CrossRef]

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Ohta, J.

T. Miyashita, M. Kato, and J. Ohta, “Wavefront aberration measurement technology for microlenses using a Mach–Zehnder interferometer with effective apertures,” Opt. Eng. 48(7), 073609 (2009).
[CrossRef]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Rockstuhl, C.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

Salt, M.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

Scharf, T.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Amplitude and phase measurements of highly focused light in optical data storage systems,” accepted for publication in Jpn. J. Appl. Phys. (2010).
[CrossRef]

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

Schwider, J.

H. Sickinger, J. Schwider, and B. Manzke, “Fiber-based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik (Stuttg.) 110, 239–243 (1999).

J. Schwider and H. Sickinger, “Array tests for microlenses,” Optik (Stuttg.) 107, 26–34 (1997).

J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22(21), 3421–3432 (1983).
[CrossRef] [PubMed]

Sickinger, H.

H. Sickinger, J. Schwider, and B. Manzke, “Fiber-based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik (Stuttg.) 110, 239–243 (1999).

J. Schwider and H. Sickinger, “Array tests for microlenses,” Optik (Stuttg.) 107, 26–34 (1997).

Spolaczyk, R.

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Vokinger, U.

U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
[CrossRef]

Völkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Wolf, E.

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[CrossRef]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Appl. Opt.

Curr. Nanosci.

C. Rockstuhl, I. Märki, T. Scharf, M. Salt, H. P. Herzig, and R. Dändiker, “High-resolution interference microscopy: a tool for probing optical waves in the far-field on a nanometric length scale,” Curr. Nanosci. 2(4), 337–350 (2006).
[CrossRef]

J. Opt. A

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A 8, S407–S429 (2006).

Jpn. J. Appl. Phys.

M.-S. Kim, T. Scharf, and H. P. Herzig, “Amplitude and phase measurements of highly focused light in optical data storage systems,” accepted for publication in Jpn. J. Appl. Phys. (2010).
[CrossRef]

Opt. Commun.

Y. Li and E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39(4), 211–215 (1981).
[CrossRef]

U. Vokinger, R. Dändliker, P. Blattner, and H. P. Herzig, “Unconventional treatment of focal shift,” Opt. Commun. 157(1-6), 218–224 (1998).
[CrossRef]

Opt. Eng.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

T. Miyashita, M. Kato, and J. Ohta, “Wavefront aberration measurement technology for microlenses using a Mach–Zehnder interferometer with effective apertures,” Opt. Eng. 48(7), 073609 (2009).
[CrossRef]

Optik (Stuttg.)

J. Schwider and H. Sickinger, “Array tests for microlenses,” Optik (Stuttg.) 107, 26–34 (1997).

H. Sickinger, J. Schwider, and B. Manzke, “Fiber-based Mach–Zehnder interferometer for measuring wave aberrations of microlenses,” Optik (Stuttg.) 110, 239–243 (1999).

Proc. SPIE

T. Miyashita, “International standards for metrology of microlens arrays,” Proc. SPIE 5858, 585802 (2005).
[CrossRef]

Other

D. Malacara, Opical Shop Testing (Wiley, 1977), Chap. 2.

M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ. Press, 1999), Chaps. 7 and 9.

H. Gross, H. Zugge, M. Peschka, and F. Blechinger, Handbook of Optical Systems (Wiley-VCH, 2007) Vol. 3, p. 126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup with the plane wave illumination. The piezo stage in the object arm allows one to scan samples with nanometer resolution along the optical axis. In the reference arm, the piezo-driven mirror changes the optical path. Four possible test geometries, (b) the plane wave test and the 3D front focus measurement, (c) the spherical wave test for the back focus, (d) the 3D back focus measurement, and (e) the spherical wave test for the front focus. Gray immersion medium is standard immersion oil for the microscopy.

Fig. 2
Fig. 2

Plane-wave illumination: measurement of spherical wavefront provides the geometrical properties and the surface profile of the lens.

Fig. 3
Fig. 3

Spherical wave illumination: the lens converts an incoming spherical wave into a plane wave. (a) The back focus stays outside the substrate. (b) The back focus stays inside the substrate and refraction at the bottom surface causes aberrations. (c) The immersion in the illumination suppresses refraction at the lower substrate surface.

Fig. 4
Fig. 4

Example shows influence of immersion on lens testing. The sample lens has a diameter of 62 µm, an NA of 0.43, and a back focal length of 100 µm, which stays in the substrate of 170 µm thickness. Spherical wave illumination is used according to Figs. 3(b) and 3(c)––in (a) a 100X / NA 0.9 dry objective is used, and in (b) 100X / NA of 1.4 oil immersion objective is used.

Fig. 5
Fig. 5

SEM image of replicated polymer microlens array with 20 μm diameter and 22 μm pitch at a 45° inclination angle.

Fig. 6
Fig. 6

Interferometric fringe images of microlens illuminated with a plane wave: full field of view of the CCD camera (upper row) and measured wrapped phase within the lens aperture (bottom row) for 405 nm (left), 532 nm (center), and 642 nm (right).

Fig. 7
Fig. 7

Interferometric fringe images of a microlens illuminated with a spherical wave through its back focus: full-field view of the CCD camera (upper row) and measured wavefront deviations from a plane wave within the lens aperture (bottom row) for 405 nm (left), 532 nm (center), and 642 nm (right).

Fig. 8
Fig. 8

Interferometric fringe images of microlens illuminated with a spherical wave through its front focus: full-field of view of the CCD camera (upper row) and measured wavefront deviations from a plane wave within the lens aperture (bottom row) for 405 nm (left), 532 nm (center), and 642 nm (right).

Fig. 9
Fig. 9

Retrieved surface profiles from measured wavefronts for 405 nm (red square), 532 nm (green triangle), 642 nm (blue square), and the measured profile by the WYCO NT3300 optical profiler (black line).

Fig. 10
Fig. 10

Measured 3D intensity map of the front focus: (a) the x-z slices for 405 nm (left), 532 nm (center), 642 nm (right), and (b) on-axis intensity profiles of three wavelengths. The substrate surface and the lens rim are located at position 0 on the z axis. A typical phase measurement is displayed in the inset of the 642 nm intensity map.

Fig. 11
Fig. 11

Measured 3D intensity map of the back focus: (a) the x-z slices for 405 nm (left), 532 nm (center), 642 nm (right), and (b) on-axis intensity profiles of three wavelengths. The substrate surface and the lens rim are located at position 0 on the z axis.

Tables (3)

Tables Icon

Table 1 Geometrical Parameters by Plane Wave Test for Three Wavelengths

Tables Icon

Table 2 Theoretical and Experimental Spot Sizes for Three Wavelengths

Tables Icon

Table 3 Theoretical and Experimental Depth of Focus for Three Wavelengths

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f front = ROC ( n 1 ) ,
f back = n sub f front .
FN = α 2 λ f ,
NA = α f .
FWHM spotsize = 0.5 λ NA .
NA = n sin ( θ ) .
DOF = λ n NA 2 .

Metrics