Abstract

We demonstrate a temporal imaging system based on parametric mixing that allows simple triggering from an external clock by using a time-lens-based pump laser. We integrate our temporal imaging system into a time-to-frequency measurement scheme and demonstrate the ability to perform characterization of temporal waveforms with 1.4-ps resolution and a 530-ps record length. We also integrate our system into a temporal-magnification scheme and demonstrate single-shot operation with a 113 × magnification factor, 1.5-ps resolution, and 220-ps record length.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  2. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
    [CrossRef]
  3. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989).
    [CrossRef] [PubMed]
  4. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [CrossRef]
  5. C. Bennett and B. Kolner, “Principles of parametric temporal imaging—Part I. System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
    [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
    [CrossRef] [PubMed]
  7. L. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
    [CrossRef]
  8. Y. Han, O. Boyraz, and B. Jalali, “Tera-sample per second real-time waveform digitizer,” Appl. Phys. Lett. 87(24), 241116–241118 (2005).
    [CrossRef]
  9. C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31(4), 540–542 (2006).
    [CrossRef] [PubMed]
  10. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett. 24(11), 783–785 (1999).
    [CrossRef]
  11. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
    [CrossRef] [PubMed]
  12. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
    [CrossRef] [PubMed]
  13. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
    [CrossRef]
  14. T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope,” J. Opt. Soc. Am. B 25(6), A101–A110 (2008).
    [CrossRef]
  15. P. C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond pulse imaging: Ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14(5), 1159–1170 (1997).
    [CrossRef]
  16. J.-H. Chung and A. M. Weiner, “Real-time detection of femtosecond optical pulse sequences via time-to-space conversion in the lightwave communications band,” J. Lightwave Technol. 21(12), 3323–3333 (2003).
    [CrossRef]
  17. Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
    [CrossRef]
  18. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  19. P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
    [CrossRef]
  20. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
    [CrossRef]
  21. J. Chou, C. V. Bennett, O. Boyraz, and B. Jalali, “Triggerable continuum source for single-shot ultra-fast applications,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 806–807.
  22. D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Temporal Imaging System with Simple External Clock Synchronization,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFK3.
  23. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [CrossRef] [PubMed]
  24. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  25. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006).
    [CrossRef] [PubMed]
  26. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
    [CrossRef] [PubMed]
  27. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  28. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” IEEE J. Lightwave Technol. 24(7), 2649–2662 (2006).
    [CrossRef]
  29. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [CrossRef] [PubMed]
  30. J. Azaña and M. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
    [CrossRef]
  31. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” IEEE J. Lightwave Technol 21(12), 3085–3103 (2003).
    [CrossRef]
  32. V. J. Hernandez, C. V. Bennett, B. D. Moran, A. D. Drobshoff, C. Langrock, D. Chang, M. M. Fejer, and M. Ibsen, “745 fs Resolution Single-Shot Recording at 2.1 Tsample/s and 104 Mframes/s Using Temporal Imaging,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDNFA2.
  33. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
    [CrossRef]

2009 (3)

2008 (4)

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

2006 (6)

2005 (2)

Y. Han, O. Boyraz, and B. Jalali, “Tera-sample per second real-time waveform digitizer,” Appl. Phys. Lett. 87(24), 241116–241118 (2005).
[CrossRef]

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

2004 (1)

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

2003 (2)

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” IEEE J. Lightwave Technol 21(12), 3085–3103 (2003).
[CrossRef]

J.-H. Chung and A. M. Weiner, “Real-time detection of femtosecond optical pulse sequences via time-to-space conversion in the lightwave communications band,” J. Lightwave Technol. 21(12), 3323–3333 (2003).
[CrossRef]

2000 (3)

J. Azaña and M. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

C. Bennett and B. Kolner, “Principles of parametric temporal imaging—Part I. System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

L. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[CrossRef]

1999 (1)

1997 (1)

1994 (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

1992 (1)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

1989 (1)

1986 (1)

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Agrawal, G. P.

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

Almeida, P. J.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Azaña, J.

J. Azaña and M. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Barthelemy, A.

L. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[CrossRef]

Barthélémy, A.

Bennett, C.

C. Bennett and B. Kolner, “Principles of parametric temporal imaging—Part I. System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

Bennett, C. V.

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Boyraz, O.

Y. Han, O. Boyraz, and B. Jalali, “Tera-sample per second real-time waveform digitizer,” Appl. Phys. Lett. 87(24), 241116–241118 (2005).
[CrossRef]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

Chung, J.-H.

Cohen, O.

Dianov, E. M.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Dorrer, C.

Fainman, Y.

Fauchet, P. M.

Foster, M. A.

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Froehly, C.

L. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[CrossRef]

Gaeta, A. L.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Geraghty, D. F.

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Han, Y.

Y. Han, O. Boyraz, and B. Jalali, “Tera-sample per second real-time waveform digitizer,” Appl. Phys. Lett. 87(24), 241116–241118 (2005).
[CrossRef]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” IEEE J. Lightwave Technol 21(12), 3085–3103 (2003).
[CrossRef]

Ibsen, M.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Ishikawa, K.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Y. Han, O. Boyraz, and B. Jalali, “Tera-sample per second real-time waveform digitizer,” Appl. Phys. Lett. 87(24), 241116–241118 (2005).
[CrossRef]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” IEEE J. Lightwave Technol 21(12), 3085–3103 (2003).
[CrossRef]

Kalashyan, M.

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Kolner, B.

C. Bennett and B. Kolner, “Principles of parametric temporal imaging—Part I. System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

Kolner, B. H.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Kuo, Y. H.

Lin, Q.

Lipson, M.

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Louradour, F.

Mamyshev, P. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Manolatou, C.

Mansuryan, T.

Mazurenko, Y. T.

Messager, V.

L. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[CrossRef]

Mouradian, L.

Muriel, M.

J. Azaña and M. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

Nazarathy, M.

Okawachi, Y.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

Paniccia, M.

Petropoulos, P.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Richardson, D. J.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Rong, H.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Sakabe, S.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

Salem, R.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shimizu, S.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

Sih, V.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Sun, P. C.

Takagi, Y.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

Thomsen, B. C.

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Turner, A. C.

Turner-Foster, A. C.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

van Howe, J.

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” IEEE J. Lightwave Technol. 24(7), 2649–2662 (2006).
[CrossRef]

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

Weiner, A. M.

Xu, C.

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” IEEE J. Lightwave Technol. 24(7), 2649–2662 (2006).
[CrossRef]

Xu, S.

Yamada, Y.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

Yesayan, G.

Zeytunyan, A.

Zhang, J.

Appl. Phys. Lett. (2)

Y. Han, O. Boyraz, and B. Jalali, “Tera-sample per second real-time waveform digitizer,” Appl. Phys. Lett. 87(24), 241116–241118 (2005).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Electron. Lett. (1)

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers,” Electron. Lett. 28(10), 931–932 (1992).
[CrossRef]

IEEE J. Lightwave Technol (1)

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” IEEE J. Lightwave Technol 21(12), 3085–3103 (2003).
[CrossRef]

IEEE J. Lightwave Technol. (1)

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” IEEE J. Lightwave Technol. 24(7), 2649–2662 (2006).
[CrossRef]

IEEE J. Quantum Electron. (5)

J. Azaña and M. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36(5), 517–526 (2000).
[CrossRef]

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

C. Bennett and B. Kolner, “Principles of parametric temporal imaging—Part I. System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

L. Mouradian, F. Louradour, V. Messager, A. Barthelemy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. J. Almeida, P. Petropoulos, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “All-optical packet compression based on time-to-wavelength conversion,” IEEE Photon. Technol. Lett. 16(7), 1688–1690 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, “Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal,” Jpn. J. Appl. Phys. 44(No. 9A), 6546–6549 (2005).
[CrossRef]

Nat. Photonics (1)

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Nature (3)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Sov. Phys. Usp. (1)

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Sov. Phys. Usp. 29(7), 642–647 (1986).
[CrossRef]

Other (3)

J. Chou, C. V. Bennett, O. Boyraz, and B. Jalali, “Triggerable continuum source for single-shot ultra-fast applications,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, New York, 2006), pp. 806–807.

D. H. Broaddus, M. A. Foster, O. Kuzucu, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Temporal Imaging System with Simple External Clock Synchronization,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFK3.

V. J. Hernandez, C. V. Bennett, B. D. Moran, A. D. Drobshoff, C. Langrock, D. Chang, M. M. Fejer, and M. Ibsen, “745 fs Resolution Single-Shot Recording at 2.1 Tsample/s and 104 Mframes/s Using Temporal Imaging,” in Nonlinear Optics: Materials, Fundamentals and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDNFA2.

Supplementary Material (1)

» Media 1: AVI (894 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a FWM-based time-lens system. A signal sent through an optical fiber with the group-delay dispersion matching the focal length of the time-lens is mixed with a linearly chirped pump pulse in a FWM process. The converted output experiences a quadratic phase shift. In this case, the output would undergo time-magnification by a factor of D 2/D 1, where D 1 and D 2 are the group velocity dispersion (GVD) parameters for the fiber before and after the FWM interaction, respectively.

Fig. 2
Fig. 2

Schematic of the pump source. Pulses are generated using an arbitrary RF clock input, and then spectrally broadened through SPM in a low normal-dispersion fiber.

Fig. 3
Fig. 3

A schematic of the UFO scheme. The signal undergoes half as much dispersion as the pump, which corresponds to the focal length of the time-lens. The pump and the signal mix on the silicon waveguide. An OSA displays the output spectrum of both inputs and the idler output, and the idler spectrum emerges as a scaled version of the signal input in time domain.

Fig. 4
Fig. 4

The pump and signal pulses mix to form a narrowband idler. The flat spectral profile of the pump ensures fidelity over the entire aperture of the time-lens.

Fig. 5
Fig. 5

A composite OSA trace showing the full record length of 530 ps, and a single trace (inset) showing the 1.4-ps resolution of the system.

Fig. 6
Fig. 6

A schematic of the single-shot temporal-magnification system. The signal undergoes time-to-frequency conversion and is sent through a dispersive fiber link. Analogous to far-field diffraction, the temporal profile of the converted output takes on the spectral profile. This results in the magnification of the initial temporal profile of the signal. A 5-GHz LeCroy oscilloscope displays the photodiode output.

Fig. 7
Fig. 7

A composite oscilloscope trace obtained by multiple data acquisitions with varying signal-pump delays showing the single-shot record length of 220 ps.

Fig. 8
Fig. 8

(a) A plot of an individual pulse showing the impulse response of the temporal-magnification system to be 1.5 ps. The tail on the pulse arises from the response of the photodiode. (b) A histogram of the pulse-to-pulse jitter between the output of the system and the sync output of the fiber laser functioning as the test system. The r.m.s. value of the timing jitter is shown to be 0.27 ps over 2 microseconds.

Fig. 9
Fig. 9

The fringe period decreases with increasing separation. (a) 0.5 nm separation with movie showing phase procession between the lasers (Media 1). We believe the non-sinusoidal shape of these peaks arises from soliton effect compression in the amplifier before the temporal imaging stage [33]. (b) 1.5 nm separation, and (c) 2.5 nm separation. (d) The phase slip between the two lasers, which are not phase-locked, washes out the fringes when averaged over multiple shots.

Metrics