Abstract

We present an ultra-small all-silica high temperature sensor based on a reflective Fabry-Perot modal interferometer (FPMI). Our FPMI is made of a micro-cavity (~4.4 μm) directly fabricated into a fiber taper probe less than 10 μm in diameter. Its sensing head is a miniaturized single mode-multimode fiber configuration without splicing. The sensing mechanism of FPMI is the interference among reflected fundamental mode and excited high-order modes at the end-faces. Its temperature sensitivity is ~20 pm/°C near the wavelength of 1550 nm. This kind of sensor can work in harsh environments with ultra-large temperature gradient, but takes up little space because of its unique geometry and small size.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [CrossRef]
  2. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  3. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  4. Y. Z. Zhu, Z. Y. Huang, F. B. Shen, and A. B. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
    [CrossRef] [PubMed]
  5. A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Advances in sapphire-fiber-based intrinsic interferometric sensors,” Opt. Lett. 17(21), 1544–1546 (1992).
    [CrossRef] [PubMed]
  6. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [CrossRef] [PubMed]
  7. C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
    [CrossRef]
  8. S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004).
    [CrossRef]
  9. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [CrossRef] [PubMed]
  10. D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006).
    [CrossRef]
  11. H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  12. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [CrossRef] [PubMed]
  13. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [CrossRef] [PubMed]
  14. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  15. Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [CrossRef] [PubMed]
  16. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009).
    [CrossRef] [PubMed]
  17. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
    [CrossRef]

2010

2009

2008

2007

B. W. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

Y.-J. Rao, M. Deng, D.-W. Duan, X.-C. Yang, T. Zhu, and G.-H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[CrossRef] [PubMed]

2006

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006).
[CrossRef]

2005

2004

S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004).
[CrossRef]

1992

1991

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Brambilla, G.

Cheng, G.-H.

Choi, E. S.

Choi, H. Y.

Chung, Y.

Claus, R. O.

Coviello, G.

Cox, D.

Deng, M.

Dong, B.

Duan, D.-W.

Finazzi, V.

Gollapudi, S.

Gong, J.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Han, M.

Han, Y.

Han, Y. K.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Huang, Z. Y.

Hwang, D.

Kahrizi, M.

B. W. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

Kim, J. H.

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Lally, E.

Lee, B. H.

Lee, J.

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

Li, Y.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Luo, C.

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

May, R. G.

Minkovich, V. P.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006).
[CrossRef]

Monzon-Hernandez, D.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006).
[CrossRef]

Moon, D. S.

Moon, S.

Mudhana, G.

Murphy, K. A.

Nam, S. H.

S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004).
[CrossRef]

Nguyen, L. V.

Paek, U. C.

Paek, U.-C.

Park, K. S.

Park, S. J.

Pruneri, V.

Rao, Y.-J.

Renna, F.

Ruffin, P.

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

Shen, F. B.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

Tsai, H. L.

Tsai, H.-L.

Villatoro, J.

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[CrossRef] [PubMed]

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006).
[CrossRef]

Wang, A.

Wang, A. B.

Wang, J.

Wei, T.

Xiao, H.

Yang, X.-C.

Yin, S.

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004).
[CrossRef]

Zhan, C.

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

Zhang, B. W.

B. W. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

Zhu, T.

Zhu, Y. Z.

Zhun, C.

S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004).
[CrossRef]

IEE Proc., J Optoelectron.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc., J Optoelectron. 138(5), 343–354 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Monzon-Hernandez, V. P. Minkovich, and J. Villatoro, “High-temperature sensing with tapers made of microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(3), 511–513 (2006).
[CrossRef]

IEEE Sens. J.

B. W. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[CrossRef] [PubMed]

T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[CrossRef] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U.-C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[CrossRef] [PubMed]

A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Advances in sapphire-fiber-based intrinsic interferometric sensors,” Opt. Lett. 17(21), 1544–1546 (1992).
[CrossRef] [PubMed]

Y. Z. Zhu, Z. Y. Huang, F. B. Shen, and A. B. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef] [PubMed]

Proc. SPIE

C. Zhan, J. H. Kim, J. Lee, S. Yin, P. Ruffin, and C. Luo, “High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings,” Proc. SPIE 6698, 66980F (2007).
[CrossRef]

S. H. Nam, C. Zhun, and S. Yin, “Recent advances on fabricating in-fiber gratings in single crystal sapphire fiber,” Proc. SPIE 5560, 147–155 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microscope image of the SMF-TT in our experiment, five photographs separated by four dashed vertical lines are used to show the whole profile of the SMF-TT. The black arrow indicates the location of the micro-notch.

Fig. 2
Fig. 2

SEM image (a) of the micro-notch cavity from the side view: three arrows show the edges of the cavity at the fiber tip, (b) of the cross section with the fiber tip cleaved at the position indicated in (a) by a dash line.

Fig. 3
Fig. 3

Interference spectra of the FPMI device in air at different temperatures.

Fig. 4
Fig. 4

Illustration of the FPMI. I1 and I2 are the reflections at end-face 1 and end-face 2 respectively; Lc is the length of the cavity. When I2 enters end-face 1, the fundamental mode is possible to be excited to a higher-order mode.

Fig. 5
Fig. 5

Dependence of the measured wavelength shift on temperature. The asterisk represents the measured results while the solid line is the fitting result. The inset shows the dependence of error on temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F S R = 2 π λ / δ ,
{ S = d λ d T = 2 π δ ( d Δ 1 d T + d Δ 2 d T ) = 2 π δ ( 2 α T L c + d Δ 2 d T ) , d Δ 2 d T [ ( n 1 n 2 ) n σ T + ( n 1 n 2 ) r α T ] d z ,

Metrics