Abstract

We present evidence that aerosol droplets, ~1-2μm in diameter, can be optically bound over a 4mm distance within a volume formed by the overlap of the central cores and rings of two counterpropagating Bessel beams. The sizes of the individual polydisperse aerosol particles can be estimated from the angular variation of the elastic light scattering. Scattered light from the two orthogonally polarized trapping beams and from a Gaussian probe beam of different wavelength can be used to provide independent estimations of size. The coalescence of two droplets was observed and characterized.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin, “Fiber based optical trapping of aerosols,” Opt. Express 16(19), 14550–14560 (2008).
    [CrossRef] [PubMed]
  2. H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
    [CrossRef] [PubMed]
  3. E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
    [CrossRef]
  4. A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
    [CrossRef]
  5. A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
    [CrossRef]
  6. V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
    [CrossRef] [PubMed]
  7. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
    [CrossRef] [PubMed]
  8. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
    [CrossRef]
  9. D. L. Andrews and J. Rodriguez, “Collapse of optical binding under secondary irradiation,” Opt. Lett. 33(16), 1830–1832 (2008).
    [CrossRef] [PubMed]
  10. W. Singer, M. Frick, S. Bernet, and M. Ritsh-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20(7), 1568–1574 (2003).
    [CrossRef]
  11. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [CrossRef] [PubMed]
  12. J. Durnin, “Exact solutions for nondiffacting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
    [CrossRef]
  13. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [CrossRef]
  14. V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84(1-2), 149–156 (2006).
    [CrossRef]
  15. J. Li and P. Chylek, “Resonances of a dielectric sphere illuminated by two counterpropagating plane waves,” J. Opt. Soc. Am. A 10(4), 687–692 (1993).
    [CrossRef]
  16. H. C. van de Hulst and R. T. Wang, “Glare Spots,” Appl. Opt. 30(33), 4755–4763 (1991).
    [CrossRef] [PubMed]
  17. D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
    [CrossRef] [PubMed]

2009 (2)

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
[CrossRef]

2008 (3)

2006 (1)

V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84(1-2), 149–156 (2006).
[CrossRef]

2005 (2)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef]

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

2001 (2)

E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
[CrossRef]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

1989 (1)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

1987 (1)

Aarts, D. G. A. L.

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

Abeyewickreme, A.

A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
[CrossRef]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Andrews, D. L.

Bernet, S.

Bonn, D.

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

Brzobohatý, O.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Carruthers, A. E.

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef]

Chaves-Cerda, S.

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

Chylek, P.

Cizmár, T.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Dholakia, K.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84(1-2), 149–156 (2006).
[CrossRef]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef]

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

Durnin, J.

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Frick, M.

Garcés-Chávez, V.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Garcez-Chavez, V.

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Guo, H.

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

Gutiérrez-Vega, J. C.

Jayasinghe, S. N.

A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
[CrossRef]

Karasek, V.

V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84(1-2), 149–156 (2006).
[CrossRef]

Karásek, V.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Kraemer, L.

E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
[CrossRef]

Kwok, A.

A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
[CrossRef]

Lekkerkerker, H. N. W.

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

Li, J.

López-Mariscal, C.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

McEwan, J. R.

A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
[CrossRef]

McGloin, D.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin, “Fiber based optical trapping of aerosols,” Opt. Express 16(19), 14550–14560 (2008).
[CrossRef] [PubMed]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

Meresman, H.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Mikhailov, E. F.

E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
[CrossRef]

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Niessner, R.

E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
[CrossRef]

Reid, J. P.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Ritsh-Marte, M.

Rodriguez, J.

Rudd, D.

Shahvisi, A.

Singer, W.

Summers, M.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

D. Rudd, C. López-Mariscal, M. Summers, A. Shahvisi, J. C. Gutiérrez-Vega, and D. McGloin, “Fiber based optical trapping of aerosols,” Opt. Express 16(19), 14550–14560 (2008).
[CrossRef] [PubMed]

Tatarkova, S. A.

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef]

van de Hulst, H. C.

Vlasenko, S. S.

E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
[CrossRef]

Volke-Sepulveda, K.

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

Wang, R. T.

Wegdam, G. H.

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

Wills, J. B.

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Zemanek, P.

V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84(1-2), 149–156 (2006).
[CrossRef]

Zemánek, P.

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84(1-2), 149–156 (2006).
[CrossRef]

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[CrossRef] [PubMed]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[CrossRef]

Integ. Biol. (1)

A. Abeyewickreme, A. Kwok, J. R. McEwan, and S. N. Jayasinghe, “Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency,” Integ. Biol. 1(3), 260–266 (2009).
[CrossRef]

J. Aerosol Sci. (1)

E. F. Mikhailov, S. S. Vlasenko, L. Kraemer, and R. Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aerosol Sci. 32(6), 697–711 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

H. Meresman, J. B. Wills, M. Summers, D. McGloin, and J. P. Reid, “Manipulation and characterisation of accumulation and coarse mode aerosol particles using a Bessel beam trap,” Phys. Chem. Chem. Phys. 11(47), 11333–11339 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63(12), 1233–1236 (1989).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89(28), 283901 (2002).
[CrossRef]

D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, “Hydrodynamics of droplet coalescence,” Phys. Rev. Lett. 95(16), 164503 (2005).
[CrossRef] [PubMed]

SPIE Proc. (1)

A. E. Carruthers, S. A. Tatarkova, V. Garcez-Chavez, K. Dholakia, K. Volke-Sepulveda, and S. Chaves-Cerda, “Optical Guiding along Gaussian and Bessel Light Beams,” SPIE Proc. 5121, 68–76 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Polydisperse droplets are shown in: (a) a long range optical binding configuration over a distance of 4mm; and (b) a short range binding configuration in the Bessel beam (BB) rings and central core. In panel (b) the field of view is 780μm, as shown by an arrow which provides a guide to the eye for the BB central core. Droplets displaced from this arrow due to gravity are trapped in the rings. These images have been greyscale inverted. The phase functions for three particles, identified in panel (b), are shown to the right. The inter-particle separation of droplets 1 → 2, and 2 → 3 are 136μm and 241μm, respectively.

Fig. 2
Fig. 2

(colour online). A single droplet is sized using the 532nm trapping light with (a) the -z direction beam (p polarization), (b) + z direction beam (s polarization), (c) both beams (s + p polarization), and (d) a 633nm probe beam (s polarization). The experimental data shown by dashed black lines were fitted to Mie theory calculations shown by solid grey lines. The droplet radius found for each phase function is given. The droplet image D has been rotated for easy comparison with (d).

Fig. 3
Fig. 3

Coalescence of two droplets is shown by sizing using the combined s + p polarization from the trapping beams. The phase functions (PF) for (a) optically guided droplet (droplet A) and (b) optically bound droplet (droplet B) are shown immediately before coalescence. The resultant droplet (droplet C) has a corresponding PF (c) observed after coalescence. The dotted black line for each case shows the experimentally obtained PF, and is compared to a Mie theory calculation shown by the solid grey line.

Metrics