Abstract

A dynamic spectral-domain optical coherence elastography (OCE) imaging technique is reported. In this technique, audio-frequency compressive vibrations are generated by a piezoelectric stack as external excitation, and strain rates in the sample are calculated and mapped quantitatively using phase-sensitive spectral-domain optical coherence tomography. At different driving frequencies, this technique provides contrast between sample regions with different mechanical properties, and thus is used to mechanically characterize tissue. We present images of a three-layer silicone tissue phantom and rat tumor tissue ex vivo, based on quantitative strain rate. Both acquisition speed and processing speed are improved dramatically compared with previous OCE imaging techniques. With high resolution, high acquisition speed, and the ability to characterize the mechanical properties of tissue, this OCE technique has potential use in non-destructive volumetric imaging and clinical applications.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [CrossRef]
  2. M. Orescanin, K. S. Toohey, and M. F. Insana, “Material properties from acoustic radiation force step response,” J. Acoust. Soc. Am. 125(5), 2928–2936 (2009).
    [CrossRef]
  3. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
    [CrossRef]
  4. R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [CrossRef]
  5. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
    [CrossRef]
  6. S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
    [CrossRef]
  7. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
    [CrossRef]
  8. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
    [CrossRef]
  9. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. (to be published).
  10. V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
    [CrossRef]
  11. M. A. Kasapi and J. M. Gosline, “Strain-rate-dependent mechanical properties of the equine hoof wall,” J. Exp. Biol. 199(Pt 5), 1133–1146 (1996).
  12. F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
    [CrossRef]
  13. X. Liang, and S. A. Boppart, “Dynamic optical coherence elastography and applications, ” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuG2.
  14. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [CrossRef]
  15. R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
    [CrossRef]
  16. R. A. Leitgeb, and M. Wojtkowski, “Complex and coherence noise free Fourier domain optical coherence tomography, ” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J.G. Fujimoto, Eds. (Springer, New York, 2008).

2010 (1)

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

2009 (5)

2008 (1)

2006 (3)

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef]

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef]

2001 (1)

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

1998 (1)

1996 (1)

M. A. Kasapi and J. M. Gosline, “Strain-rate-dependent mechanical properties of the equine hoof wall,” J. Exp. Biol. 199(Pt 5), 1133–1146 (1996).

Adie, S. G.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef]

Alexandrov, S. A.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef]

Armstrong, J. J.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef]

Bijnens, B.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Boppart, S. A.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, and S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17(25), 23114–23122 (2009).
[CrossRef]

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
[CrossRef]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[CrossRef]

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. (to be published).

Chaney, E. J.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[CrossRef]

Crecea, V.

D’hooge, J.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

De Scheerder, I.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Gosline, J. M.

M. A. Kasapi and J. M. Gosline, “Strain-rate-dependent mechanical properties of the equine hoof wall,” J. Exp. Biol. 199(Pt 5), 1133–1146 (1996).

Haldar, J. P.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

Hillman, T. R.

Insana, M. F.

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
[CrossRef]

M. Orescanin, K. S. Toohey, and M. F. Insana, “Material properties from acoustic radiation force step response,” J. Acoust. Soc. Am. 125(5), 2928–2936 (2009).
[CrossRef]

Jamal, F.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

John, R.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

Kasapi, M. A.

M. A. Kasapi and J. M. Gosline, “Strain-rate-dependent mechanical properties of the equine hoof wall,” J. Exp. Biol. 199(Pt 5), 1133–1146 (1996).

Kennedy, B. F.

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[CrossRef]

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef]

Kirkpatrick, S. J.

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Ko, H. J.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef]

Kukulski, T.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Liang, X.

Ma, Z. H.

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Marjanovic, M.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

McLaughlin, R. A.

Oldenburg, A. L.

Orescanin, M.

M. Orescanin, K. S. Toohey, and M. F. Insana, “Material properties from acoustic radiation force step response,” J. Acoust. Soc. Am. 125(5), 2928–2936 (2009).
[CrossRef]

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
[CrossRef]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef]

Quirk, B. C.

Ralston, T. S.

Rezaeipoor, R.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

Sampson, D. D.

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17(24), 21762–21772 (2009).
[CrossRef]

Schmitt, J. M.

Stack, R.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef]

Strotmann, J.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Sutherland, G. R.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Sutton, B. P.

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

Tan, W.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef]

Toohey, K. S.

X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34(19), 2894–2896 (2009).
[CrossRef]

M. Orescanin, K. S. Toohey, and M. F. Insana, “Material properties from acoustic radiation force step response,” J. Acoust. Soc. Am. 125(5), 2928–2936 (2009).
[CrossRef]

Van de Werf, F.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Wang, R. K.

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Weidemann, F.

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Wang, Z. H. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Circulation (1)

F. Jamal, J. Strotmann, F. Weidemann, T. Kukulski, J. D’hooge, B. Bijnens, F. Van de Werf, I. De Scheerder, and G. R. Sutherland, “Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain,” Circulation 104(9), 1059–1065 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. (to be published).

J. Acoust. Soc. Am. (1)

M. Orescanin, K. S. Toohey, and M. F. Insana, “Material properties from acoustic radiation force step response,” J. Acoust. Soc. Am. 125(5), 2928–2936 (2009).
[CrossRef]

J. Biomed. Opt. (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[CrossRef]

J. Exp. Biol. (1)

M. A. Kasapi and J. M. Gosline, “Strain-rate-dependent mechanical properties of the equine hoof wall,” J. Exp. Biol. 199(Pt 5), 1133–1146 (1996).

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, and D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54(10), 3129–3139 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, and S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. U.S.A. 107(18), 8085–8090 (2010).
[CrossRef]

Tissue Eng. (1)

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef]

Other (2)

R. A. Leitgeb, and M. Wojtkowski, “Complex and coherence noise free Fourier domain optical coherence tomography, ” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J.G. Fujimoto, Eds. (Springer, New York, 2008).

X. Liang, and S. A. Boppart, “Dynamic optical coherence elastography and applications, ” in Asia Communications and Photonics Conference and Exhibition, Technical Digest (CD) (Optical Society of America, 2009), paper TuG2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics