Abstract

Simulation of vacuum laser acceleration, because of its scheme’s simplicity, attracts many people involved in. However, how to put the particle in the initial positions in the field has not been considered seriously in some such schemes. An inattentive choice of electron’s initial conditions may lead to misleading results. Here we show that arbitrarily placing the particle within the laser field leads to an overestimation of its energy gain, and offer suggestions for selecting appropriate initial conditions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shimoda, “Proposal for an electron accelerator using an optical maser,” Appl. Opt. 1(1), 33–36 (1962).
    [CrossRef]
  2. T. Tajima and J. M. Dawson, “Laser electron-accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
    [CrossRef]
  3. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  4. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
    [CrossRef]
  5. Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
    [CrossRef]
  6. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
    [CrossRef]
  7. G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
    [CrossRef] [PubMed]
  8. G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997).
    [CrossRef]
  9. S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
    [CrossRef] [PubMed]
  10. P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
    [CrossRef]
  11. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
    [CrossRef] [PubMed]
  12. E. Siegman Lasers, (University Science Books, Mill Valley, California, 1986).
  13. J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
    [CrossRef]
  14. Y. I. Salamin, “Accurate fields of a radially polarized Gaussian laser beam,” N. J. Phys. 8(8), 133 (2006).
    [CrossRef]
  15. T. W. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16(23), 1054–1056 (1966).
    [CrossRef]
  16. B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3719–3732 (1998).
    [CrossRef]
  17. P. K. Kaw and R. M. Kulsrud, “Relativistic acceleration of charged particles by superintense laser beams,” Phys. Fluids 16(2), 321–328 (1973).
    [CrossRef]
  18. E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(4), 3003–3021 (1993).
    [CrossRef] [PubMed]
  19. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity laser beams,” Appl. Phys. B 74, s83–s88 (2002).
    [CrossRef]

2008 (1)

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

2006 (3)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
[CrossRef]

Y. I. Salamin, “Accurate fields of a radially polarized Gaussian laser beam,” N. J. Phys. 8(8), 133 (2006).
[CrossRef]

2004 (1)

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

2002 (2)

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity laser beams,” Appl. Phys. B 74, s83–s88 (2002).
[CrossRef]

2001 (2)

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

1998 (1)

B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3719–3732 (1998).
[CrossRef]

1997 (1)

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997).
[CrossRef]

1993 (1)

E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(4), 3003–3021 (1993).
[CrossRef] [PubMed]

1991 (1)

S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
[CrossRef] [PubMed]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

1979 (1)

T. Tajima and J. M. Dawson, “Laser electron-accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[CrossRef]

1973 (1)

P. K. Kaw and R. M. Kulsrud, “Relativistic acceleration of charged particles by superintense laser beams,” Phys. Fluids 16(2), 321–328 (1973).
[CrossRef]

1966 (1)

T. W. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16(23), 1054–1056 (1966).
[CrossRef]

1962 (1)

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Cao, N.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Chen, Z.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Dawson, J. M.

T. Tajima and J. M. Dawson, “Laser electron-accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[CrossRef]

Esarey, E.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(4), 3003–3021 (1993).
[CrossRef] [PubMed]

Faure, J.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

Gauduel, Y. A.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

Hatsagortsyan, K. Z.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
[CrossRef]

Ho, Y. K.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Hu, S. X.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
[CrossRef]

Hua, J. F.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Kaw, P. K.

P. K. Kaw and R. M. Kulsrud, “Relativistic acceleration of charged particles by superintense laser beams,” Phys. Fluids 16(2), 321–328 (1973).
[CrossRef]

Kawata, S.

S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
[CrossRef] [PubMed]

Keitel, C. H.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
[CrossRef]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

Kibble, T. W.

T. W. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16(23), 1054–1056 (1966).
[CrossRef]

Kong, Q.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Kulsrud, R. M.

P. K. Kaw and R. M. Kulsrud, “Relativistic acceleration of charged particles by superintense laser beams,” Phys. Fluids 16(2), 321–328 (1973).
[CrossRef]

Lefebvre, E.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997).
[CrossRef]

Lin, Y. Z.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Malka, G.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997).
[CrossRef]

Malka, V.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

Maruyama, T.

S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
[CrossRef] [PubMed]

Miquel, J. L.

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997).
[CrossRef]

Mora, P.

B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3719–3732 (1998).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Nishida, Y.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Phuoc, K. T.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

Piché, M.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity laser beams,” Appl. Phys. B 74, s83–s88 (2002).
[CrossRef]

Quesnel, B.

B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3719–3732 (1998).
[CrossRef]

Ride, S. K.

E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(4), 3003–3021 (1993).
[CrossRef] [PubMed]

Rousse, A.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

Salamin, Y. I.

Y. I. Salamin, “Accurate fields of a radially polarized Gaussian laser beam,” N. J. Phys. 8(8), 133 (2006).
[CrossRef]

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
[CrossRef]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

Sessler, A. M.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Shimoda, K.

Sprangle, P.

E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(4), 3003–3021 (1993).
[CrossRef] [PubMed]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Stupakov, G. V.

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

T. Tajima and J. M. Dawson, “Laser electron-accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[CrossRef]

Takahashi, I.

S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
[CrossRef] [PubMed]

Varin, C.

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity laser beams,” Appl. Phys. B 74, s83–s88 (2002).
[CrossRef]

Wang, P. X.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Watanabe, H.

S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
[CrossRef] [PubMed]

Xie, Y. J.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Xu, J. J.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Yan, Z.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Yuan, X. Q.

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

Zhang, S. Y.

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

Zolotorev, M. S.

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity laser beams,” Appl. Phys. B 74, s83–s88 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

P. X. Wang, Y. K. Ho, X. Q. Yuan, Q. Kong, N. Cao, A. M. Sessler, E. Esarey, and Y. Nishida, “Vacuum electron acceleration by an intense laser,” Appl. Phys. Lett. 78(15), 2253–2255 (2001).
[CrossRef]

J. F. Hua, Y. K. Ho, Y. Z. Lin, Z. Chen, Y. J. Xie, S. Y. Zhang, Z. Yan, and J. J. Xu, “High-order corrected fields of ultrashort, tightly focused laser pulses,” Appl. Phys. Lett. 85(17), 3705–3707 (2004).
[CrossRef]

N. J. Phys. (1)

Y. I. Salamin, “Accurate fields of a radially polarized Gaussian laser beam,” N. J. Phys. 8(8), 133 (2006).
[CrossRef]

Nat. Phys. (1)

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, “Principles and applications of compact laser–plasma accelerators,” Nat. Phys. 4(6), 447–453 (2008).
[CrossRef]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Phys. Fluids (1)

P. K. Kaw and R. M. Kulsrud, “Relativistic acceleration of charged particles by superintense laser beams,” Phys. Fluids 16(2), 321–328 (1973).
[CrossRef]

Phys. Rep. (1)

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser–matter interactions,” Phys. Rep. 427(2-3), 41–155 (2006).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

E. Esarey, S. K. Ride, and P. Sprangle, “Nonlinear Thomson scattering of intense laser pulses from beams and plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48(4), 3003–3021 (1993).
[CrossRef] [PubMed]

B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3719–3732 (1998).
[CrossRef]

Phys. Rev. Lett. (6)

T. W. Kibble, “Refraction of electron beams by intense electromagnetic waves,” Phys. Rev. Lett. 16(23), 1054–1056 (1966).
[CrossRef]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

T. Tajima and J. M. Dawson, “Laser electron-accelerator,” Phys. Rev. Lett. 43(4), 267–270 (1979).
[CrossRef]

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser,” Phys. Rev. Lett. 78(17), 3314–3317 (1997).
[CrossRef]

S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi , “Inverse-bremsstrahlung electron acceleration,” Phys. Rev. Lett. 66(16), 2072–2075 (1991).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Other (1)

E. Siegman Lasers, (University Science Books, Mill Valley, California, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme for vacuum acceleration of an electron by a laser pulse.

Fig. 2
Fig. 2

Panels (a) and (b) show the result for t b = 0 , in normal time and reverse time respectively. Panel (d) shows the case for t b = 1200 in normal time. Panel (c) plots the longitudinal momentum as a function of coordinate z, with t b = 0 . The solid line in these panels represents a simulation in normal time with the laser propagating along the z-axis, the dotted line represents a simulation in inverse time with the laser propagating along the z-axis, and the dot-dashed line represents a simulation in normal time with the laser propagating along the −z-axis. In all cases, the electron’s initial position is x 0 = y 0 = z 0 = 0 ​ ​ , and the laser parameters are a 0 = 10 ​ ​ , w 0 = 60 ​ ​ , and τ = 200 ​ ​ .

Fig. 3
Fig. 3

The electric field strength | E | ​ ​ as a function of t b ​ ​ , where β 0 x = β 0 y = 0 ​ ​ and a 0 = 10 ​ ​ . The solid lines are for w 0 = 60 ​ ​ , τ = 200 ​ ​ and β 0 z = 0 , 0.05 , 0.5 , 0.7 , 0.8 0.999 ; The dotted line is for w 0 = 120 ​ ​ , τ = 200 ​ ​ and β 0 z = 0.999 ; The dot-dashed line is for w 0 = 60 ​ ​ , τ = 300 ​ ​ and β 0 z = 0.999 .

Fig. 4
Fig. 4

The outgoing energy γ f (solid line), needed injection energy γ i (dotted line) and initial energy γ 0 (dot-dashed line) as functions of the laser’s initial phase ϕ 0 . The laser pulse parameters are λ = 1 μ m , a 0 = 10 0 , w 0 = 60 and τ = 200 . Other parameters are β 0 = 0.9997 , θ i = 5 0 , t b = z 0 / ( β 0 cos θ i ) , x 0 = z 0 tan θ i , (a) z 0 = Z R , (b) z 0 = 10 Z R .

Tables (1)

Tables Icon

Table 1 The outgoing energy γ f and needed injection energy γ i in some typical cases. z 0 is the initial position, γ 0 the initial energy, U p 0 the initial ponderomotive potential in units of m e c 2 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E x = E 0 w 0 w ( z ) exp [ i k z i ω t + i φ ( r , z ) + i ϕ 0 r 2 w ( z ) 2 ] ,
U p = A 0 2 w 0 2 w ( z ) 2 exp [ 2 r 2 w ( z ) 2 2 ( z c t ) 2 ( c τ ) 2 ] ,
| E | [ a 0 Z R β 0 z 2 c 2 t b 2 + Z R 2 ] × exp [ ( t b β 0 z t b τ ) 2 ( β 0 2 β 0 z 2 ) c 2 t b 2 w 0 2 ( 1 + β 0 z 2 c 2 t b 2 / Z R 2 ) ] ε ,

Metrics