Abstract

All-optical OFDM uses optical techniques to multiplex together several modulated lightsources, to form a band of subcarriers that can be considered as one wavelength channel. The subcarriers have a frequency separation equal to their modulation rate. This means that they can be demultiplexed without any cross-talk between them, usually with a Discrete Fourier Transform (DFT), implemented optically or electronically. Previous work has proposed networks of optical couplers to implement the DFT. This work shows that the topology of an Arrayed Grating Waveguide Router (AWGR) can be used to perform the demultiplexing, and that the AWGR can be considered as a serial-to-parallel converter followed by a DFT. The simulations show that the electrical bandwidths of the transmitter and receiver are critical to orthogonal demultiplexing, and give insight into how crosstalk occurs in all-optical OFDM and coherent-WDM systems using waveforms and spectra along the system. Design specifications for the AWGR are developed, and show that non-uniformity will lead to crosstalk. The compensation of dispersion and the applications of these techniques to ‘coherent WDM’ systems using Non-Return to Zero modulation is discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Weinstein, “The history of orthogonal frequency-division multiplexing [History of Communications],” IEEE Commun. Mag. 47(11), 26–35 (2009).
    [CrossRef]
  2. R. W. Chang, “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell Syst. Tech. J. 45, 1775–1796 (1966).
  3. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006).
    [CrossRef] [PubMed]
  4. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
    [CrossRef]
  5. S. L. Jansen, I. Morita, T. C. W. Schenk, D. van den Borne, and H. Tanaka, “Optical OFDM - A candidate for future long-haul optical transmission systems,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2008), paper OMU3.
  6. I. B. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006).
    [CrossRef] [PubMed]
  7. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
    [CrossRef]
  8. A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [CrossRef]
  9. S. Chandrasekhar and X. Liu, “Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection,” Opt. Express 17(24), 21350–21361 (2009).
    [CrossRef] [PubMed]
  10. K. Yonenaga, A. Sano, E. Yamazaki, F. Inuzuka, Y. Miyamoto, A. Takada, and T. Yamada, “100 Gbit/s all-optical OFDM transmission using 4 x 25 Gbit/s optical duobinary signals with phase-controlled optical sub-carriers,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2008), paper JThA48.
  11. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, R. Kudo, K. Ishihara, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, H. Yamazaki, S. Kamei, and H. Ishii, “13.4-Tb/s (134x111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 3,600 km of SMF with 19-ps average PMD,” in 34th European Conference on Optical Communication (ECOC) (2008), paper Th.3.E.1.
  12. K. Takiguchi, M. Oguma, T. Shibata, and T. Takahashi, “Optical OFDM demultiplexer using Silica PLC based optical FFT circuit,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OWO3.
  13. K. Lee, C. T. D. Thai, and J.-K. K. Rhee, “All optical discrete Fourier transform processor for 100 Gbps OFDM transmission,” Opt. Express 16(6), 4023–4028 (2008).
    [CrossRef] [PubMed]
  14. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in Conference on Optical Fiber Communication, OFC, (Anaheim, CA, 2002), paper ThD1, pp. 401–402.
  15. S. Kumar and D. Yang, “Optical implementation of orthogonal frequency-division multiplexing using time lenses,” Opt. Lett. 33(17), 2002–2004 (2008).
    [CrossRef] [PubMed]
  16. R. Llorente, J. H. Lee, R. Clavero, M. Ibsen, and J. Marti, “Orthogonal wavelength-division-multiplexing technique feasibility evaluation,” J. Lightwave Technol. 23(3), 1145–1151 (2005).
    [CrossRef]
  17. H. Chen, M. Chen, and S. Xie, “All-optical sampling orthogonal frequency-division multiplexing scheme for high-speed transmission system,” J. Lightwave Technol. 27(21), 4848–4854 (2009).
    [CrossRef]
  18. Y.-K. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, “Dual-polarization 2x2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OTuM4.
  19. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
    [CrossRef]
  20. K. Tanaka and S. Norimatsu, “Transmission performance of WDM/OFDM hybrid systems over optical fibers,” Electron. Commun. Japan Part 90(10), 14–24 (2007).
    [CrossRef]
  21. K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “PLC-based eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper OThB4.
  22. D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben-Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel optical fast Fourier transform scheme enabling real-time OFDM at 392 Gbit/s and beyond,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper OWW3.
  23. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper PDPC1.
  24. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010).
    [CrossRef] [PubMed]
  25. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
    [CrossRef]
  26. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
    [CrossRef]
  27. A. D. Ellis, F. C. G. Gunning, B. Cuenot, T. C. Healy, and E. Pincemin, “Towards 1TbE using Coherent WDM,” in Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT, (2008), pp. 1–4.
  28. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  29. H. Bulow, F. Buchali, and A. Klekamp, “Electronic Dispersion Compensation,” J. Lightwave Technol. 26(1), 158–167 (2008).
    [CrossRef]
  30. Q. Yang, W. Shieh, and Y. Ma, “Guard-band influence on orthogonal-band-multiplexed coherent optical OFDM,” Opt. Lett. 33(19), 2239–2241 (2008).
    [CrossRef] [PubMed]
  31. S. B. Weinstein and P. M. Ebert, “Data transmission frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol. 19(5), 628–634 (1971).
    [CrossRef]
  32. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A signal processing approach (Wiley, New York, 1999).
  33. K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
    [CrossRef]
  34. L. Soldano, F. Veerman, M. K. Smit, B. Verbeek, and E. Pennings, “Multimode interference couplers,” in Integrated Photonics Research, (Monteray, CA, 1991), paper TuD1.
  35. L. O. Lierstuen and A. Sudbo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7(9), 1034–1036 (1995).
    [CrossRef]
  36. H. G. Beutler, “The theory of the concave grating,” J. Opt. Soc. Am. 35(5), 311–350 (1945).
    [CrossRef]
  37. K. R. Poguntke and J. B. D. Soole, “Design of a multistripe array grating integrated cavity (MAGIC) laser,” J. Lightwave Technol. 11(12), 2191–2200 (1993).
    [CrossRef]
  38. A. Gholipour and R. Faraji-Dana, “Nonuniform arrayed waveguide gratings for flat-top passband transfer function,” J. Lightwave Technol. 25(12), 3678–3685 (2007).
    [CrossRef]
  39. S. L. Jansen, I. Morita, and H. Tanaka, “16x52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” in ECOC 2007, (Berlin, 2007), paper PD 1.3.
  40. A. D. Ellis, “Modulation formats which approach the Shannon limit,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OMM4.
  41. A. D. Ellis, F. C. G. Gunning, and T. Healy, “Coherent WDM: the achievement of high information spectral density through phase control within the transmitter,” in Conference on Optical Fiber Communication, OFC, (Anaheim, CA, 2006), paper OThR4.

2010 (1)

2009 (4)

2008 (5)

2007 (2)

A. Gholipour and R. Faraji-Dana, “Nonuniform arrayed waveguide gratings for flat-top passband transfer function,” J. Lightwave Technol. 25(12), 3678–3685 (2007).
[CrossRef]

K. Tanaka and S. Norimatsu, “Transmission performance of WDM/OFDM hybrid systems over optical fibers,” Electron. Commun. Japan Part 90(10), 14–24 (2007).
[CrossRef]

2006 (3)

2005 (2)

1996 (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

1995 (1)

L. O. Lierstuen and A. Sudbo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7(9), 1034–1036 (1995).
[CrossRef]

1993 (1)

K. R. Poguntke and J. B. D. Soole, “Design of a multistripe array grating integrated cavity (MAGIC) laser,” J. Lightwave Technol. 11(12), 2191–2200 (1993).
[CrossRef]

1992 (1)

K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
[CrossRef]

1991 (1)

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

1971 (1)

S. B. Weinstein and P. M. Ebert, “Data transmission frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol. 19(5), 628–634 (1971).
[CrossRef]

1966 (1)

R. W. Chang, “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell Syst. Tech. J. 45, 1775–1796 (1966).

1965 (1)

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

1945 (1)

Armstrong, J.

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[CrossRef]

Barros, D. J.

Ben Ezra, S.

Beutler, H. G.

Buchali, F.

Bulow, H.

Chandrasekhar, S.

Chang, R. W.

R. W. Chang, “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell Syst. Tech. J. 45, 1775–1796 (1966).

Chen, H.

Chen, M.

Clavero, R.

Cooley, J. W.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Djordjevic, I. B.

Dragone, C.

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

Ebert, P. M.

S. B. Weinstein and P. M. Ebert, “Data transmission frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol. 19(5), 628–634 (1971).
[CrossRef]

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Faraji-Dana, R.

Freude, W.

Gholipour, A.

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Hibino, Y.

K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
[CrossRef]

Hillerkuss, D.

Ibsen, M.

Ip, E.

Ishihara, K.

Kahn, J. M.

Klekamp, A.

Kobayashi, T.

Kudo, R.

Kumar, S.

Lau, A. P.

Lee, J. H.

Lee, K.

Leuthold, J.

Li, J.

Lierstuen, L. O.

L. O. Lierstuen and A. Sudbo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7(9), 1034–1036 (1995).
[CrossRef]

Liu, X.

Llorente, R.

Lowery, A. J.

Ma, Y.

Marculescu, A.

Marti, J.

Masuda, H.

Miyamoto, Y.

Narkiss, N.

Norimatsu, S.

K. Tanaka and S. Norimatsu, “Transmission performance of WDM/OFDM hybrid systems over optical fibers,” Electron. Commun. Japan Part 90(10), 14–24 (2007).
[CrossRef]

Okamoto, K.

K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
[CrossRef]

Poguntke, K. R.

K. R. Poguntke and J. B. D. Soole, “Design of a multistripe array grating integrated cavity (MAGIC) laser,” J. Lightwave Technol. 11(12), 2191–2200 (1993).
[CrossRef]

Rhee, J.-K. K.

Sano, A.

Shieh, W.

Q. Yang, W. Shieh, and Y. Ma, “Guard-band influence on orthogonal-band-multiplexed coherent optical OFDM,” Opt. Lett. 33(19), 2239–2241 (2008).
[CrossRef] [PubMed]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[CrossRef]

Sigurdsson, G.

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Soole, J. B. D.

K. R. Poguntke and J. B. D. Soole, “Design of a multistripe array grating integrated cavity (MAGIC) laser,” J. Lightwave Technol. 11(12), 2191–2200 (1993).
[CrossRef]

Sudbo, A.

L. O. Lierstuen and A. Sudbo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7(9), 1034–1036 (1995).
[CrossRef]

Takahashi, K.

K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
[CrossRef]

Takatori, Y.

Tanaka, K.

K. Tanaka and S. Norimatsu, “Transmission performance of WDM/OFDM hybrid systems over optical fibers,” Electron. Commun. Japan Part 90(10), 14–24 (2007).
[CrossRef]

Teschke, M.

Thai, C. T. D.

Tukey, J. W.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

Vasic, B.

Weinstein, S. B.

S. B. Weinstein, “The history of orthogonal frequency-division multiplexing [History of Communications],” IEEE Commun. Mag. 47(11), 26–35 (2009).
[CrossRef]

S. B. Weinstein and P. M. Ebert, “Data transmission frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol. 19(5), 628–634 (1971).
[CrossRef]

Winter, M.

Worms, K.

Xie, S.

Yamada, E.

Yamazaki, E.

Yang, D.

Yang, Q.

Yasu, M.

K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
[CrossRef]

Yoshida, E.

Bell Syst. Tech. J. (1)

R. W. Chang, “High-speed multichannel data transmission with bandlimited orthogonal signals,” Bell Syst. Tech. J. 45, 1775–1796 (1966).

Electron. Commun. Japan Part (1)

K. Tanaka and S. Norimatsu, “Transmission performance of WDM/OFDM hybrid systems over optical fibers,” Electron. Commun. Japan Part 90(10), 14–24 (2007).
[CrossRef]

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–588 (2006).
[CrossRef]

IEEE Commun. Mag. (1)

S. B. Weinstein, “The history of orthogonal frequency-division multiplexing [History of Communications],” IEEE Commun. Mag. 47(11), 26–35 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

A. D. Ellis and F. C. G. Gunning, “Spectral density enhancement using coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

L. O. Lierstuen and A. Sudbo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photon. Technol. Lett. 7(9), 1034–1036 (1995).
[CrossRef]

K. Okamoto, K. Takahashi, M. Yasu, and Y. Hibino, “Fabrication of a wavelength-insensitive 8x8 star coupler,” IEEE Photon. Technol. Lett. 4(1), 61–63 (1992).
[CrossRef]

C. Dragone, “An N*N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3(9), 812–815 (1991).
[CrossRef]

IEEE Trans. Commun. Technol. (1)

S. B. Weinstein and P. M. Ebert, “Data transmission frequency-division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun. Technol. 19(5), 628–634 (1971).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. (1)

Math. Comput. (1)

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19(90), 297–301 (1965).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Other (15)

L. Soldano, F. Veerman, M. K. Smit, B. Verbeek, and E. Pennings, “Multimode interference couplers,” in Integrated Photonics Research, (Monteray, CA, 1991), paper TuD1.

S. L. Jansen, I. Morita, and H. Tanaka, “16x52.5-Gb/s, 50-GHz spaced, POLMUX-CO-OFDM transmission over 4,160 km of SSMF enabled by MIMO processing,” in ECOC 2007, (Berlin, 2007), paper PD 1.3.

A. D. Ellis, “Modulation formats which approach the Shannon limit,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OMM4.

A. D. Ellis, F. C. G. Gunning, and T. Healy, “Coherent WDM: the achievement of high information spectral density through phase control within the transmitter,” in Conference on Optical Fiber Communication, OFC, (Anaheim, CA, 2006), paper OThR4.

S. L. Jansen, I. Morita, T. C. W. Schenk, D. van den Borne, and H. Tanaka, “Optical OFDM - A candidate for future long-haul optical transmission systems,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2008), paper OMU3.

K. Yonenaga, A. Sano, E. Yamazaki, F. Inuzuka, Y. Miyamoto, A. Takada, and T. Yamada, “100 Gbit/s all-optical OFDM transmission using 4 x 25 Gbit/s optical duobinary signals with phase-controlled optical sub-carriers,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2008), paper JThA48.

A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, R. Kudo, K. Ishihara, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, H. Yamazaki, S. Kamei, and H. Ishii, “13.4-Tb/s (134x111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 3,600 km of SMF with 19-ps average PMD,” in 34th European Conference on Optical Communication (ECOC) (2008), paper Th.3.E.1.

K. Takiguchi, M. Oguma, T. Shibata, and T. Takahashi, “Optical OFDM demultiplexer using Silica PLC based optical FFT circuit,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OWO3.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” in Conference on Optical Fiber Communication, OFC, (Anaheim, CA, 2002), paper ThD1, pp. 401–402.

Y.-K. Huang, D. Qian, R. E. Saperstein, P. N. Ji, N. Cvijetic, L. Xu, and T. Wang, “Dual-polarization 2x2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2009), paper OTuM4.

C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A signal processing approach (Wiley, New York, 1999).

A. D. Ellis, F. C. G. Gunning, B. Cuenot, T. C. Healy, and E. Pincemin, “Towards 1TbE using Coherent WDM,” in Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology, OECC/ACOFT, (2008), pp. 1–4.

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “PLC-based eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper OThB4.

D. Hillerkuss, A. Marculescu, J. Li, M. Teschke, G. Sigurdsson, K. Worms, S. Ben-Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Novel optical fast Fourier transform scheme enabling real-time OFDM at 392 Gbit/s and beyond,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper OWW3.

D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Conference on Optical Fiber Communication, OFC, (San Diego, CA, 2010), paper PDPC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical all-optical OFDM system. The receivers can be direct-detection for NRZ, or coherent receivers, shown here, generating inphase (I) and quadrature (Q) electrical signals, from which the data in a QPSK signal can be decoded.

Fig. 2
Fig. 2

The waveforms of the two individual subcarriers, which, when added contribute to an OFDM signal. Each waveform has an integer number of periods within an OFDM symbol. The phases of the waveforms carry the data. Left – four sample points, A – D, can be used to distinguish between the red and teal waveforms, if weighted then summed appropriately. Right – to decode the second symbol correctly, the quadrature component of the teal waveform is required, otherwise the sample points will all return a zero value.

Fig. 3
Fig. 3

Left – similar to Fig. 2, but the sample points have been delayed by one sample. In this case, the teal and red waveforms cannot be completely distinguished by weighting and summing the samples. Right – the lower trace shows a slow phase transition between adjacent OFDM symbols. This again means that subcarriers cannot be completely distinguished.

Fig. 4
Fig. 4

Equivalence of an AWGR (top) and a DFT as represented by (bottom) a parallel-to-serial converter followed by a matrix of splitters (Split.), phase-shifts, and combiners (Comb.). The matrix of splitters, phase shifts, combiners and samplers implement a Discrete Fourier Transform. The samplers can either be electrical or optical.

Fig. 5
Fig. 5

The input slab coupler and the arrayed waveguides for the equivalent of a serial to parallel converter. That is, if the outputs of the arrayed grating waveguides (m = 1,2…4) are sampled at time E, this is equivalent to sampling the input waveform at times A, B, C and D, then converting these sequential samples into four parallel signals.

Fig. 6
Fig. 6

Optical spectra along the system: red – transmitted spectrum from Channel 1’s transmitter; green – spectrum of combined transmitted channels; blue – spectrum for Channel 4 at the output of the AWGR demultiplexer.

Fig. 7
Fig. 7

Inphase (I) and Quadrature (Q) eye diagrams out of the high-bandwidth coherent receiver for Channel 1: left – only Channel 1 transmitted; middle – all four channels transmitted; right – all channels except Channel 1 transmitted (interferers only).

Fig. 8
Fig. 8

Typical constellation obtained by sampling the I and Q waveforms from a coherent receiver: left, 40 GHz electrical bandwidths; right – 10 GHz electrical bandwidths.

Fig. 9
Fig. 9

Eye diagrams for the 1-component from Channel 1’s receiver: left, 10 GHz electrical bandwidths; right – 30 GHz electrical bandwidths.

Fig. 10
Fig. 10

Effect AWGR uniformity, defined as the loss of light traversing via the outer arrayed waveguides relative to the loss of light via the inner waveguides. The label is the electrical bandwidth of the transmitter and the receiver. The Q’s of all four channels are plotted.

Fig. 11
Fig. 11

Effect of WDM demultiplexer filter bandwidth on a 3-channel system capable of carrying 60 Gbps/polarization.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V s c , k = m = 0 N 1 V i n ( m ) . exp ( 2 π j k m N )
V s c , k ( t + ( N 1 ) . Δ T ) = m = 0 N 1 V i n ( t + m . Δ T ) . exp ( 2 π j k m N )
Δ L Δ T c / n g
A P r w sin θ
θ m , n = 2 π . m . n s d λ R n . d o

Metrics