Abstract

In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  2. I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
    [CrossRef]
  3. I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission,” J. Lightwave Technol. 25(11), 3619–3625 (2007).
    [CrossRef]
  4. H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
    [CrossRef]
  5. J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
    [CrossRef]
  6. H. G. Batshon and I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/phase/polarization modulation,” IEEE Photon. Technol. Lett. 22, 299–301 (2010).
    [CrossRef]
  7. B. Vasic, I. B. Djordjevic, and R. K. Kostuk, “Low-density parity check codes and iterative decoding for long-haul optical communication systems,” J. Lightwave Technol. 21(2), 438–446 (2003).
    [CrossRef]
  8. S. Benedetto and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun. 40(4), 708–721 (1992).
    [CrossRef]
  9. I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
    [CrossRef]
  10. S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun. 52(4), 670–678 (2004).
    [CrossRef]

2010

H. G. Batshon and I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/phase/polarization modulation,” IEEE Photon. Technol. Lett. 22, 299–301 (2010).
[CrossRef]

2009

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
[CrossRef]

2008

2007

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission,” J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

2004

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun. 52(4), 670–678 (2004).
[CrossRef]

2003

1992

S. Benedetto and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun. 40(4), 708–721 (1992).
[CrossRef]

Arabaci, M.

Ashikhmin, A.

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun. 52(4), 670–678 (2004).
[CrossRef]

Batshon, H. G.

H. G. Batshon and I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/phase/polarization modulation,” IEEE Photon. Technol. Lett. 22, 299–301 (2010).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
[CrossRef]

Benedetto, S.

S. Benedetto and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun. 40(4), 708–721 (1992).
[CrossRef]

Cvijetic, M.

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission,” J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

Djordjevic, I. B.

H. G. Batshon and I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/phase/polarization modulation,” IEEE Photon. Technol. Lett. 22, 299–301 (2010).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
[CrossRef]

I. B. Djordjevic, M. Arabaci, and L. L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission,” J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

B. Vasic, I. B. Djordjevic, and R. K. Kostuk, “Low-density parity check codes and iterative decoding for long-haul optical communication systems,” J. Lightwave Technol. 21(2), 438–446 (2003).
[CrossRef]

Kostuk, R. K.

Kramer, G.

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun. 52(4), 670–678 (2004).
[CrossRef]

McDonough, J.

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

Minkov, L. L.

Poggiolini, P.

S. Benedetto and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun. 40(4), 708–721 (1992).
[CrossRef]

Savory, S. J.

ten Brink, S.

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun. 52(4), 670–678 (2004).
[CrossRef]

Vasic, B.

Wang, T.

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission,” J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

Xu, L.

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra highspeed optical transmission,” J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

IEEE Commun. Mag.

J. McDonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

H. G. Batshon and I. B. Djordjevic, “Beyond 240 Gb/s per wavelength optical transmission using coded hybrid subcarrier/amplitude/phase/polarization modulation,” IEEE Photon. Technol. Lett. 22, 299–301 (2010).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Proposal for beyond 100-Gb/s optical transmission based on bit-interleaved LDPC-coded modulation,” IEEE Photon. Technol. Lett. 19(12), 874–876 (2007).
[CrossRef]

H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Multidimensional LDPC-coded modulation for beyond 400 Gb/s per wavelength transmission,” IEEE Photon. Technol. Lett. 21(16), 1139–1141 (2009).
[CrossRef]

IEEE Trans. Commun.

S. Benedetto and P. Poggiolini, “Theory of polarization shift keying modulation,” IEEE Trans. Commun. 40(4), 708–721 (1992).
[CrossRef]

S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun. 52(4), 670–678 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

H-SAPP bit-interleaved LDPC-coded modulation block diagrams: (a) 32-H-SAPP system, (b) HAPP transmitter (c) HAPP modulator and (d) HAPP receiver configurations.

Fig. 2
Fig. 2

32-H-SAPP constellation points.

Fig. 3
Fig. 3

BER performance versus the OSNR per bit for both uncoded and LDPC coded data.

Tables (2)

Tables Icon

Table 1 Mapping rule lookup table for 8-HAPP.

Tables Icon

Table 2 Mapping rule lookup table for the 32-H-SAPP scenario.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s 1 = a x 2 a y 2 s 2 = 2 a x a y cos ( δ ) s 3 = 2 a x a y sin ( δ ) δ = ϕ x ϕ y .
E x = a x ( t ) e j ( ω t + ϕ x ( t ) ) E y = a y ( t ) e j ( ω t + ϕ y ( t ) )

Metrics