Abstract

We report a continuous-wave singly resonant optical parametric oscillator pumped by a widely tunable titanium-doped sapphire ring laser. It produces up to 0.8 W of mid-infrared power. The wavelength can be tuned in a few seconds from 2.5 to 3.5 µm or from 3.4 to 4.4 µm and scanned up to 40 GHz without mode-hops by only changing the pump beam wavelength. Spectroscopic capability is demonstrated by measuring parts of the photoacoustic absorption spectrum of NH3 near 3196 cm−1.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [CrossRef]
  2. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21(17), 1336–1338 (1996).
    [CrossRef] [PubMed]
  3. I. Lindsay, B. Adhimoolam, P. Groß, M. Klein, and K. Boller, “110GHz rapid, continuous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser,” Opt. Express 13(4), 1234–1239 (2005).
    [CrossRef] [PubMed]
  4. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
    [CrossRef] [PubMed]
  5. A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).
  6. G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, “Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator,” Opt. Lett. 25(5), 341–343 (2000).
    [CrossRef]
  7. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]
  8. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO(3) in an external cavity,” Opt. Lett. 16(18), 1400–1402 (1991).
    [CrossRef] [PubMed]
  9. G. Guelachvili, and K. N. Rao, Handbook of infrared standards II (Academic Press, 1993), pp. 152–153.

2010

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

2006

2005

2000

1996

1995

1991

1968

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Adhimoolam, B.

Alexander, J. I.

Andrieux, E.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

Boller, K.

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Briaudeau, S.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

Byer, R. L.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Fejer, M. M.

Groß, P.

Henderson, A.

Himbert, M.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

Kimble, H. J.

Klein, M.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Lindsay, I.

Lindsay, I. D.

McGloin, D.

Myers, L. E.

Pierce, J. W.

Polzik, E. S.

Rihan, A.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

Stafford, R.

Turnbull, G. A.

Zanon-Willette, T.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

Zondy, J.-J.

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

Appl. Phys. B

A. Rihan, E. Andrieux, T. Zanon-Willette, S. Briaudeau, M. Himbert, and J.-J. Zondy, “A pump-resonant signal-resonant optical parametric oscillator for spectroscopic breath analysis,” Appl. Phys. B DOI: 10.1007/S00340-010-3996-8, (2010).

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

G. Guelachvili, and K. N. Rao, Handbook of infrared standards II (Academic Press, 1993), pp. 152–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The optical layout of the cw SRO system. It is pumped by a cw Ti:Al2O3 ring laser, which is pumped by a frequency-doubled Nd:YVO4 laser. A half-wave plate (HWP) controls the pump beam polarization. Lenses (L) are used to focus and collimate the beams. The SRO cavity mirrors are highly reflecting (HR) for the signal beam. The concave cavity mirrors are transparent for the pump and idler beams. Dichroic beam splitters (DBS) separate the beams.

Fig. 2
Fig. 2

(a) The power of the idler beam as a function of the pump beam power. The oscillation threshold is about 1.5 W. (b) The pump depletion as a function of the pump beam power.

Fig. 3
Fig. 3

The oscillation threshold for the pump beam power as a function of the signal beam wavelength. Only the pump beam power and wavelength were changed during the measurement. The oscillation threshold increases and maximum idler output power decreases towards the limits of the anti-reflection coating bands. Signal tuning shown in the figure corresponds to idler wavelengths from 3405 to 2570 nm. The peak of high oscillation threshold near 1110 nm is probably due to the OH absorption in the MgO:PPLN crystal. The cavity dimensions are different from those in Fig. 2.

Fig. 4
Fig. 4

(a) The full tuning range of the cw SRO system: the idler beam wavelength as a function of the pump beam wavelength. The optimization for two different regions of operation, short and long idler wavelengths, is marked with black circles and gray squares, respectively. (b) The corresponding wavelengths of the signal beam that oscillates inside the SRO resonator as a function of the pump beam wavelength.

Fig. 5
Fig. 5

Typical pattern of the idler beam frequency when the pump beam frequency is scanned. The pump laser reaches the limit of its scanning range near 105 750 GHz of the idler frequency.

Fig. 6
Fig. 6

Part of the spectrum of NH3 measured using the Ti:Al2O3 pumped SRO and photoacoustic spectroscopy. The spectrum was measured in single mode-hop free scan. The wavenumber scale is uncalibrated. The peak appearing at 3196.05 cm−1 is due to water and the others are NH3 absorption peaks (see Ref. [9].).

Metrics