Abstract

A PbS quantum dots (QDs) fiber amplifier was fabricated and characterized by using a standard single mode fiber (SMF) coupler. The fiber amplifier was fabricated by coating PbS QDs doped sol-gel films onto the tapered SMF coupler. Through the evanescent wave, the PbS quantum dots were excited. With a 980 nm wavelength laser diode (LD) as the pump, the fiber amplifier exhibited a wide band optical gain at 1310 nm with the largest gain as high as 10 dB. The amplified spontaneous emission (ASE) noise is very low resulted from the amplifier configuration of evanescent wave exciting, which is critical to improve the signal-to-noise ratio. Therefore the proposed fiber amplifier will find great potential in the fiber-optic communication systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
    [CrossRef] [PubMed]
  2. M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
    [CrossRef]
  3. A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).
  4. J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
    [CrossRef]
  5. P. Bhattacharya and Z. Mi, “Quantum-Dot Optoelectronic Devices,” Proc. IEEE 95(9), 1723–1740 (2007).
    [CrossRef]
  6. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
    [CrossRef]
  7. T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
    [CrossRef]
  8. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
    [CrossRef]
  9. O. Qasaimeh, “Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Lightwave Technol. 27(12), 1978–1984 (2009).
    [CrossRef]
  10. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
    [CrossRef]
  11. K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
    [CrossRef]
  12. J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
    [CrossRef]
  13. P. R. Watekar, A. Lin, S. Ju, and W. T. Han, “1537 nm Emission Upon 980 nm Pumping in PbSe Quantum Dots Doped Optical Fiber,” OFC, OWO1 (2008).
  14. S. Kawanishi, T. Komukai, M. Ohmori and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” CLEO, CTuII4(2007).
  15. H. S. Mackenzie and F. P. Payne, “Evanescent field Amplification in a Tapered Single-Mode Optical Fiber,” Electron. Lett. 26(2), 130–132 (1990).
    [CrossRef]
  16. V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Opt. Lett. 30(2), 171–173 (2005).
    [CrossRef] [PubMed]
  17. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
    [CrossRef]
  18. F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
    [CrossRef]
  19. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
    [CrossRef]
  20. C. Jiang, “Ultrabroadband Gain Characteristics of a Quantum-Dot-Doped Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 140–144 (2009).
    [CrossRef]

2009 (5)

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

O. Qasaimeh, “Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Lightwave Technol. 27(12), 1978–1984 (2009).
[CrossRef]

C. Jiang, “Ultrabroadband Gain Characteristics of a Quantum-Dot-Doped Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 140–144 (2009).
[CrossRef]

2007 (3)

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

P. Bhattacharya and Z. Mi, “Quantum-Dot Optoelectronic Devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

2005 (2)

V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Opt. Lett. 30(2), 171–173 (2005).
[CrossRef] [PubMed]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

2004 (1)

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

2003 (2)

J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
[CrossRef]

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

1999 (1)

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

1990 (1)

H. S. Mackenzie and F. P. Payne, “Evanescent field Amplification in a Tapered Single-Mode Optical Fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

1987 (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[CrossRef]

1982 (1)

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

Akiyama, T.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Arakawa, Y.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Auxier, J. M.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

Bakshi, M.-S.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Bakueva, L.

V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Opt. Lett. 30(2), 171–173 (2005).
[CrossRef] [PubMed]

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Banipal, T.-S.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Bawendi, M. G.

J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Bhattacharya, P.

P. Bhattacharya and Z. Mi, “Quantum-Dot Optoelectronic Devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

Bimberg, D.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

Borrelli, N. F.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

Bulovic, V.

J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
[CrossRef]

Cai, H.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Cauchi, S.

Chang, T.-W. F.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Chu, F.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Coe-Sullivan, S.

J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
[CrossRef]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Efros, A. L.

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

Eisenstein, G.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Erneux, T.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

Fang, Z.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Geng, J.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Gorelikov, I.

Han, X.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Hines, M. A.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Honkanen, S.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

Houlihan, J.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

Huyet, G.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

Jiang, C.

C. Jiang, “Ultrabroadband Gain Characteristics of a Quantum-Dot-Doped Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 140–144 (2009).
[CrossRef]

Kasowski, R.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[CrossRef]

Kaur, G.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Kaur, H.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Kim, J.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

Klimov, V. I.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Kumacheva, E.

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Laemmlin, M.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Mackenzie, H. S.

H. S. Mackenzie and F. P. Payne, “Evanescent field Amplification in a Tapered Single-Mode Optical Fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Mahler, W.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Mandel, P.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

Meuer, C.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

Mi, Z.

P. Bhattacharya and Z. Mi, “Quantum-Dot Optoelectronic Devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Morrell, M. M.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

Musikhin, S.

V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Opt. Lett. 30(2), 171–173 (2005).
[CrossRef] [PubMed]

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Pang, F.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Payne, F. P.

H. S. Mackenzie and F. P. Payne, “Evanescent field Amplification in a Tapered Single-Mode Optical Fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

Petersen, N. O.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Peyghambarian, N.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

Piwonski, T.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

Possmayer, F.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Qasaimeh, O.

O. Qasaimeh, “Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Lightwave Technol. 27(12), 1978–1984 (2009).
[CrossRef]

Qua, R.

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Sargent, E. H.

V. Sukhovatkin, S. Musikhin, I. Gorelikov, S. Cauchi, L. Bakueva, E. Kumacheva, and E. H. Sargent, “Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films,” Opt. Lett. 30(2), 171–173 (2005).
[CrossRef] [PubMed]

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Scholes, G. D.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Schülzgen, A.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

Sen, S.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

Steckel, J.-S.

J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
[CrossRef]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Sugawara, M.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

Sukhovatkin, V.

Suna, A.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[CrossRef]

Thakur, P.

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Tzolov, M.

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Viktorov, E. A.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

Wang, Y.

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[CrossRef]

West, B. R.

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

Wundke, K.

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

M.-S. Bakshi, P. Thakur, G. Kaur, H. Kaur, T.-S. Banipal, F. Possmayer, and N. O. Petersen, “Stabilization of PbS Nanocrystals by Bovine Serum Albumin in its Native and Denatured States,” Adv. Funct. Mater. 19(9), 1451–1458 (2009).
[CrossRef]

Adv. Mater. (1)

J.-S. Steckel, S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, “1.3mm and 1.55mm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Devices,” Adv. Mater. 15(21), 1862–1866 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94(11), 113501 (2009).
[CrossRef]

K. Wundke, J. M. Auxier, A. Schülzgen, N. Peyghambarian, and N. F. Borrelli, “Room-temperature gain at 1.3 um in PbS-doped glasses,” Appl. Phys. Lett. 75(20), 3060–3062 (1999).
[CrossRef]

J. M. Auxier, M. M. Morrell, B. R. West, S. Honkanen, A. Schülzgen, N. Peyghambarian, S. Sen, and N. F. Borrelli, “Ion-exchanged waveguides in glass doped with PbS quantum dots,” Appl. Phys. Lett. 85(25), 6098–6100 (2004).
[CrossRef]

L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent, “Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer,” Appl. Phys. Lett. 82(17), 2895–2897 (2003).
[CrossRef]

Electron. Lett. (1)

H. S. Mackenzie and F. P. Payne, “Evanescent field Amplification in a Tapered Single-Mode Optical Fiber,” Electron. Lett. 26(2), 130–132 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (1)

O. Qasaimeh, “Effect of Doping on the Optical Characteristics of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Lightwave Technol. 27(12), 1978–1984 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and Experimental Study of High-Speed Small-Signal Cross-Gain Modulation of Quantum-Dot Semiconductor Optical Amplifiers,” IEEE J. Quantum Electron. 45(3), 240–248 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Jiang, “Ultrabroadband Gain Characteristics of a Quantum-Dot-Doped Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 140–144 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An Ultrawide-Band Semiconductor Optical Amplifier Having an Extremely High Penalty-Free Output Power of 23 dBm Achieved With Quantum Dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[CrossRef]

J. Chem. Phys. (1)

Y. Wang, A. Suna, W. Mahler, and R. Kasowski, “PbS in Polymers. From molecules to bulk solids,” J. Chem. Phys. 87(12), 7315–7322 (1987).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (2)

P. Bhattacharya and Z. Mi, “Quantum-Dot Optoelectronic Devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[CrossRef]

Science (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290(5490), 314–317 (2000).
[CrossRef] [PubMed]

Sens. Act. B (1)

F. Pang, X. Han, F. Chu, J. Geng, H. Cai, R. Qua, and Z. Fang, “Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method,” Sens. Act. B 120(2), 610–614 (2007).
[CrossRef]

Sov. Phys. Semicond. (1)

A. L. Efros and A. L. Efros, “Interband absorption of light in a semiconductor sphere,” Sov. Phys. Semicond. 16(7), 772–775 (1982).

Other (2)

P. R. Watekar, A. Lin, S. Ju, and W. T. Han, “1537 nm Emission Upon 980 nm Pumping in PbSe Quantum Dots Doped Optical Fiber,” OFC, OWO1 (2008).

S. Kawanishi, T. Komukai, M. Ohmori and H. Sakaki, “Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber,” CLEO, CTuII4(2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic device structure of the semiconductor quantum dots fiber amplifier (SQDFA).

Fig. 2
Fig. 2

TEM image of the PbS QDs doped sol.

Fig. 3
Fig. 3

XRD patterns of the PbS QDs

Fig. 4
Fig. 4

Absorption and Photoluminescence spectra for the PbS QDs doped sol.

Fig. 5
Fig. 5

Theoretical relationship between the exciton absorption peak and the size of PbS QDs.

Fig. 6
Fig. 6

The output spectra of the input signal only, the pump only and the signal with pump.

Fig. 7
Fig. 7

Gain spectrum of the SQDFA with different pump power.

Fig. 8
Fig. 8

Gain Vs. pump power at 1310 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = h c E = h c [ E g 2 + 2 E g 2 h 2 ( 1 / d a b s ) 2 / m * ] 1 / 2

Metrics